Tag Archive : technology

/ technology

Top 7 ai trends in 2019

Artificial Intelligence is a method for making a system, a computer-controlled robot. AI uses information science and algorithms to mechanize, advance and discover worth escaped from the human eye. Most of us are pondering about “what’s next for AI in 2019 paving the way to 2020?” How about we explore the latest trends in AI in 2019.

AI-Enabled Chips

Companies over the globe are accommodating Artificial Intelligence in their frameworks however the procedure of cognification is a noteworthy concern they are confronting. Hypothetically, everything is getting more astute and cannier, yet the current PC chips are not good enough and are hindering the procedure.

In contrast to other programming technologies, AI vigorously depends on specific processors that supplement the CPU. Indeed, even the quickest and most progressive CPU may not be capable to improve the speed of training an AI model. The model would require additional equipment to perform scientific estimations for complex undertakings like identifying objects or items and facial recognition.

In 2019, Leading chip makers like Intel, NVidia, AMD, ARM, Qualcomm will make chips that will improve the execution speed of AI-based applications. Cutting edge applications from the social insurance and vehicle ventures will depend on these chips for conveying knowledge to end-users.

Augmented Reality

Augmented reality AI trend in 2019

Augmented reality (AR) is one of the greatest innovation patterns at this moment, and it’s just going to become greater as AR cell phones and different gadgets become increasingly available around the globe. The best examples could be Pokémon Go and Snapchat.

Objects generated from computers coexist together and communicate with this present reality in a solitary, vivid scene. This is made conceivable by melding information from numerous sensors such as cameras, gyroscopes, accelerometers, GPS, and so forth to shape a computerized portrayal of the world that can be overlaid over the physical one.

AR and AI are distinct advancements in the field of technology; however, they can be utilized together to make one of a kind encounters in 2019. Augmented reality (AR) and Artificial Intelligence (AI) advances are progressively relevant to organizations that desire to pick up a focused edge later on the work environment. In AR, a 3D portrayal of the world must be developed to enable computerized objects to exist close by physical ones. With companies such as Apple, Google, Facebook and so on offering devices and tools to make the advancement of AR-based applications simpler, 2019 will see an upsurge in the quantity of AR applications being discharged.

Neural Networks

A neural network is an arrangement of equipment as well as programming designed after the activity of neurons in the human cerebrum. Neural networks – most commonly called artificial neural networks are an assortment of profound learning innovation, which likewise falls under the umbrella of AI.

Neural networks can adjust to evolving input; so, the system produces the most ideal outcome without expecting to overhaul the yield criteria. The idea of neural networks, which has its foundations in AI, is quickly picking up prominence in the improvement of exchanging frameworks. ANN emulate the human brain. The current neural network advances will be enhanced in 2019. This would empower AI to turn out to be progressively modern as better preparing strategies and system models are created. Areas of artificial intelligence where the neural network was successfully applied include Image Recognition, Natural Language Processing, Chatbots, Sentiment Analysis, and Real-time Transcription.

The convergence of AI and IoT

IoT & AI trends in 2019

The most significant job AI will play in the business world is expanding client commitment, as indicated by an ongoing report issued by Microsoft. The Internet of Things is reshaping life as we probably are aware of it from the home to the workplace and past. IoT items award us expanded control over machines, lights, and door locks.

Organizational IoT applications would get higher exactness and expanded functionalities by the use of AI. In actuality, self-driving cars is certifiably not a commonsense plausibility without IoT working intimately with AI. The sensors utilized by a car to gather continuous information is empowered by the IoT.

Artificial intelligence and IoT will progressively combine at edge computing. Most Cloud-based models will be put at the edge layer. 2019 would see more instances of the intermingling of AI with IoT and AI with Blockchain. IoT is good to go to turn into the greatest driver of AI in the undertaking. Edge devices will be furnished with the unique AI chips dependent on FPGAs and ASICs.

Computer Vision

Computer Vision is the procedure of systems and robots reacting to visual data sources — most normally pictures and recordings. To place it in a basic way, computer vision progresses the info (yield) steps by reading (revealing) data at a similar visual level as an individual and along these lines evacuating the requirement for interpretation into machine language (the other way around). Normally, computer vision methods have the potential for a more elevated amount of comprehension and application in the human world.

While computer vision systems have been around since the 1960s, it wasn’t until recently that they grabbed the pace to turn out to be useful assets. Advancements in Machine Learning, just as the progressively skilled capacity and computational devices have empowered the ascent in the stock of Computer Vision techniques. What follows is also an explanation of how Artificial Intelligence is born. Computer vision, as a region of AI examines, has entered a far cry in a previous couple of years.

Facial Recognition

Facial recognition AI trends in 2019

Facial recognition is a type of AI application that aides in recognizing an individual utilizing their digital picture or patterns of their facial highlights. A framework utilized to perform facial recognition utilizes biometrics to outline highlights from the photograph or video. It contrasts this data and a huge database of recorded countenances to find the right match. 2019 would see an expansion in the use of this innovation with higher exactness and dependability.

In spite of having a lot of negative press lately, facial recognition is viewed as the Artificial Intelligence applications future because of its gigantic prominence. It guarantees a gigantic development in 2019. The year 2019 will observe development in the utilization of facial recognition with greater unwavering quality and upgraded precision.

Open-Source AI

Open Source AI would be the following stage in the growth of AI. Most of the Cloud-based advancements that we use today have their beginning in open source ventures. Artificial intelligence is relied upon to pursue a similar direction as an ever-increasing number of organizations are taking a gander at a joint effort and information sharing.

Open Source AI would be the following stage in the advancement of AI. Numerous organizations would begin publicly releasing their AI stacks for structuring a more extensive encouraging group of people of AI communities. This would prompt the improvement of a definitive AI open source stack.

Conclusion

Numerous innovation specialists propose that the eventual fate of AI and ML is sure. It is the place where the world is headed. In 2019 and beyond these advancements are going to support as more organizations come to understand the advantages. However, the worries encompassing the dependability and cybersecurity will keep on being fervently discussed. The ML and AI trends for 2019 and beyond hold guarantees to enhance business development while definitely contracting the dangers.

Understanding the difference between AI, ML & NLP models

Technology has revolutionized our lives and is constantly changing and progressing. The most flourishing technologies include Artificial Intelligence, Machine Learning, Natural Language Processing, and Deep Learning. These are the most trending technologies growing at a fast pace and are today’s leading-edge technologies.

These terms are generally used together in some contexts but do not mean the same and are related to each other in some or the other way. ML is one of the leading areas of AI which allows computers to learn by themselves and NLP is a branch of AI.

What is Artificial Intelligence?

Artificial refers to something not real and Intelligence stands for the ability of understanding, thinking, creating and logically figuring out things. These two terms together can be used to define something which is not real yet intelligent.

AI is a field of computer science that emphasizes on making intelligent machines to perform tasks commonly associated with intelligent beings. It basically deals with intelligence exhibited by software and machines.

While we have only recently begun making meaningful strides in AI, its application has encompassed a wide spread of areas and impressive use-cases. AI finds application in very many fields, from assisting cameras, recognizing landscapes, and enhancing picture quality to use-cases as diverse and distinct as self-driving cars, autonomous robotics, virtual reality, surveillance, finance, and health industries.

History of AI

The first work towards AI was carried out in 1943 with the evolution of Artificial Neurons. In 1950, Turing test was conducted by Alan Turing that can check the machine’s ability to exhibit intelligence.

The first chatbot was developed in 1966 and was named ELIZA followed by the development of the first smart robot, WABOT-1. The first AI vacuum cleaner, ROOMBA was introduced in the year 2002. Finally, AI entered the world of business with companies like Facebook and Twitter using it.

Google’s Android app “Google Now”, launched in the year 2012 was again an AI application. The most recent wonder of AI is “the Project Debater” from IBM. AI has currently reached a remarkable position

The areas of application of AI include

  • Chat-bots – An ever-present agent ready to listen to your needs complaints and thoughts and respond appropriately and automatically in a timely fashion is an asset that finds application in many places — virtual agents, friendly therapists, automated agents for companies, and more.
  • Self-Driving Cars: Computer Vision is the fundamental technology behind developing autonomous vehicles. Most leading car manufacturers in the world are reaping the benefits of investing in artificial intelligence for developing on-road versions of hands-free technology.
  • Computer Vision: Computer Vision is the process of computer systems and robots responding to visual inputs — most commonly images and videos.
  • Facial Recognition: AI helps you detect faces, identify faces by name, understand emotion, recognize complexion and that’s not the end of it.

What is Machine Learning?

One of the major applications of Artificial Intelligence is machine learning. ML is not a sub-domain of AI but can be generally termed as a sub-field of AI. The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience.

Implementing an ML model requires a lot of data known as training data which is fed into the model and based on this data, the machine learns to perform several tasks. This data could be anything such as text, images, audio, etc…

 Machine learning draws on concepts and results from many fields, including statistics, artificial intelligence, philosophy, information theory, biology, cognitive science, computational complexity and control theory. ML itself is a self-learning algorithm. The different algorithms of ML include Decision Trees, Neural Networks, SEO, Candidate Elimination, Find-S, etc.

History of Machine Learning

The roots of ML lie way back in the 17th century with the introduction of Mechanical Adder and Mechanical System for Statistical Calculations. Turing Test conducted in 1950 was again a turning point in the field of ML.

The most important feature of ML is “Self-Learning”. The first computer learning program was written by Arthur Samuel for the game of checkers followed by the designing of perceptron (neural network). “The Nearest Neighbor” algorithm was written for pattern recognition.

Finally, the introduction of adaptive learning was introduced in the early 2000s which is currently progressing rapidly with Deep Learning is one of its best examples.

Different types of machine learning approaches are:

Supervised Learning uses training data which is correctly labeled to teach relationships between given input variables and the preferred output.

Unsupervised Learning doesn’t have a training data set but can be used to detect repetitive patterns and styles.

Reinforcement Learning encourages trial-and-error learning by rewarding and punishing respectively for preferred and undesired results.

ML has several applications in various fields such as

  • Customer Service: ML is revolutionizing customer service, catering to customers by providing tailored individual resolutions as well as enhancing the human service agent capability through profiling and suggesting proven solutions. 
  • HealthCare: The use of different sensors and devices use data to access a patient’s health status in real-time.
  • Financial Services: To get the key insights into financial data and to prevent financial frauds.
  • Sales and Marketing: This majorly includes digital marketing, which is currently an emerging field, uses several machine learning algorithms to enhance the purchases and to enhance the ideal buyer journey.

What is Natural Language Processing?

Natural Language Processing is an AI method of communicating with an intelligent system using a natural language.

Natural Language Processing (NLP) and its variants Natural Language Understanding (NLU) and Natural Language Generation (NLG) are processes which teach human language to computers. They can then use their understanding of our language to interact with us without the need for a machine language intermediary.

History of NLP

NLP was introduced mainly for machine translation. In the early 1950s attempts were made to automate language translation. The growth of NLP started during the early ’90s which involved the direct application of statistical methods to NLP itself. In 2006, more advancement took place with the launch of IBM’s Watson, an AI system which is capable of answering questions posed in natural language. The invention of Siri’s speech recognition in the field of NLP’s research and development is booming.

Few Applications of NLP include

  • Sentiment Analysis – Majorly helps in monitoring Social Media
  • Speech Recognition – The ability of a computer to listen to a human voice, analyze and respond.
  • Text Classification – Text classification is used to assign tags to text according to the content.
  • Grammar Correction – Used by software like MS-Word for spell-checking.

What is Deep Learning?

The term “Deep Learning” was first coined in 2006. Deep Learning is a field of machine learning where algorithms are motivated by artificial neural networks (ANN). It is an AI function that acts lie a human brain for processing large data-sets. A different set of patterns are created which are used for decision making.

The motive of introducing Deep Learning is to move Machine Learning closer to its main aim. Cat Experiment conducted in 2012 figured out the difficulties of Unsupervised Learning. Deep learning uses “Supervised Learning” where a neural network is trained using “Unsupervised Learning”.

Taking inspiration from the latest research in human cognition and functioning of the brain, neural network algorithms were developed which used several ‘nodes’ that process information like how neurons do. These networks have multiple layers of nodes (deep nodes and surface nodes) for different complexities, hence the term deep learning. The different activation functions used in Deep Learning include linear, sigmoid, tanh, etc.…

History of Deep Learning

The history of Deep Learning includes the introduction of “The Back-Propagation” algorithm, which was introduced in 1974, used for enhancing prediction accuracy in ML.  Recurrent Neural Network was introduced in 1986 which takes a series of inputs with no predefined limit, followed by the introduction of Bidirectional Recurrent Neural Network in 1997.  In 2009 Salakhutdinov & Hinton introduced Deep Boltzmann Machines. In the year 2012, Geoffrey Hinton introduced Dropout, an efficient way of training neural networks

Applications of Deep Learning are

  • Text and Character generation – Natural Language Generation.
  • Automatic Machine Translation – Automatic translation of text and images.
  • Facial Recognition: Computer Vision helps you detect faces, identify faces by name, understand emotion, recognize complexion and that’s not the end of it.
  • Robotics: Deep learning has also been found to be effective at handling multi-modal data generated in robotic sensing applications.

Key Differences between AI, ML, and NLP

Artificial intelligence (AI) is closely related to making machines intelligent and make them perform human tasks. Any object turning smart for example, washing machine, cars, refrigerator, television becomes an artificially intelligent object. Machine Learning and Artificial Intelligence are the terms often used together but aren’t the same.

ML is an application of AI. Machine Learning is basically the ability of a system to learn by itself without being explicitly programmed. Deep Learning is a part of Machine Learning which is applied to larger data-sets and based on ANN (Artificial Neural Networks).

The main technology used in NLP (Natural Language Processing) which mainly focuses on teaching natural/human language to computers. NLP is again a part of AI and sometimes overlaps with ML to perform tasks. DL is the same as ML or an extended version of ML and both are fields of AI. NLP is a part of AI which overlaps with ML & DL.

How is big data generated

Why big data analytics is indispensable for today’s businesses.

Ours is the age of information technology. Progress in IT has been exponential in the 21st century, and one direct consequence is the amount of data generated, consumed, and transferred. There’s no denying that the next step in our technological advancement involves real-life implementations of artificial intelligence technology.

In fact, one could say we are already in the midst of it. And there’s a definitive link between the large amounts of digital information being produced — called Big Data when it exceeds the processing capabilities of traditional database tools — and how new machine learning techniques use that data to assist the development of AI.

However, this isn’t the only application of Big Data even if it has become the most promising. Big data analytics is now a heavily researched field which helps businesses uncover ground-breaking insights from the available data to make better and informed decisions. According to IDC, big data and analytics had market revenue of more than $150 billion worldwide in 2018.

What is the scale of data that we are dealing with today?

  • ·It is estimated that there will be 10 billion mobile devices in use by 2020. This is more than the entire world population, and this is not including laptops and desktops.
  • We make over 1 billion Google searches every day.
  • Around 300 billion emails are sent every day.
  • More than 230 million tweets are written every day.
  • More than 30 petabytes (that’s 1015 bytes) of user-generated data is stored, accessed and analyzed on Facebook.
  • On YouTube alone, 300 hours of video are uploaded every minute.
  • In just 5 years, the number of connected smart devices in the world will be more than 50 billion — all of which will collect, create, and share data.
Social media platforms have shot up human-generated data exponentially.

As an aside, in an attempt to impress the potential here, let me state that we analyze less than 1% of all available data. The numbers are staggering!

Before we get to classifying all this data, let us understand the three main characteristics of what makes big data big.

The 3 Vs of Big Data

3 Vs of Big Data
Image Credit: workology

Volume

Volume refers to the amount of data generated through various sources. On social media sites, for example, we have 2 billion Facebook users, 1 billion on YouTube, and 1 billion together on Instagram and Twitter. The massive quantities of data contributed by all these users in terms of images, videos, messages, posts, tweets, etc. have pushed data analysis away from the now incapable excel sheets, databases, and other traditional tools toward big data analytics.

Velocity

This is the speed at which data is being made available — the rate of transfer over servers and between users has increased to a point where it is impossible to control the information explosion. There is a need to address this with more equipped tools, and this comes under the realm of big data.

Variety

There are structured and unstructured data in all the content being generated. Pictures, videos, emails, tweets, posts, messages, etc. are unstructured. Sensor-collected data from the millions of connected devices is what you can call semi-structured while records maintained by businesses for transactions, storage, and analyzed unstructured information are part of structured data.

Classification of Big Data

With the amount of information that is available to us today, it is important to classify and understand the nature of different kinds of data and the requirements that go into the analysis for each.

Human Generated Data

Most human-generated data is unstructured. But this data has the potential to provide deep insights for heavy user-optimization. Product companies, customer service organizations, even political campaigns these days rely heavily on this type of random data to inform themselves of their audience and to target their marketing approach accordingly.

Classification of Big Data
Image Credit: EMC

Machine Generated Data

Data created by various sensors, cameras, satellites, bio-informatic and health-care devices, audio and video analyzers, etc. combine to become the biggest source of data today. These can be extremely personalized in nature, or completely random. With the advent of internet-enabled smart devices, propagation of this data has become constant and omnipresent, providing user information with highly useful detail.

Data from Companies and Institutions

Records of finances, transactions, operations planning, demographic information, health-care records, etc. stored in relational databases are more structured and easily readable compared to disorganized online data. This data can be used to understand key performance indicators, estimate demands and shortage, prevalent factors, large-scale consumer mentality, and a lot more. This is the smallest portion of the data market but combined with consumer-centric analysis of unstructured data, can become a very powerful tool for businesses.

What we can do for you

Whether one is seeking a profit advantage or a market edge, carving a niche product or capturing crowd sentiment, developing self-driving cars or facial recognition apps, building a futuristic robot or a military drone, big data is available for all sectors to take their technology to the next level. Bridged is a place where such fruitful experiments in data are being utilized and we are endeavoring to provide assistance to companies who are willing to take advantage of this untapped but currently mandatory investment in big data.

Drone Revolution | Blog | Bridged.co

It’s a bird, it’s a plane… Oh, wait it’s a Drone!

Also known as Unmanned Aerial Vehicles (UAVs), drones have no human pilot onboard and are controlled by either a person with a remote control/smartphone on the ground or autonomously via a computer program.

These devices are already popular in various industries like Defense, Film making and Photography and are gaining popularity in fields like Farming, Atmospheric research, and Disaster relief. But even after so much innovation and experimentation, we have not explored the full capacity of data gained from drones.

We at Bridged AI are aware of this fact and are contributing to this revolution by helping the drone companies in perfecting their models by providing them with curated training data.

Impact of Drones

Drones inspecting power lines

Drones are being used by companies like GE to inspect their infrastructure, including power lines and pipelines. They can be used by companies and service organizations to provide instant surveillance in multiple locations instantly.

Surveillance by drones

They can be used for tasks like patrolling borders, tracking storms, and monitoring security. Drones are already being used by some defense services.

Border patrolling
Drones surveying farms

In agriculture, drones are used by farmers to analyze their farms for keeping a check on yield, unwanted plants or any other significant changes the crops go through.

Drones at their best

Drones can only unlock their full potential when they are at a high degree of automation. Some sectors in which drones are being used in combination with artificial intelligence are:

Image Recognition

Drones can only unlock their full potential when they are at a high degree of automation. Some sectors in which drones are being used in combination with artificial intelligence are:

Image Recognition

Drones use sensors such as electro-optical, stereo-optical, and LiDAR to perceive and absorb the environment or objects in some way.

Computer Vision

Computer Vision is concerned with the automatic extraction, analysis, and understanding of useful information from one or more drone images.

Deep Learning

Deep learning is a specialized method of information processing and a subset of machine learning that uses neural networks and huge amounts of data for decision-making.

DJI’s Drone

Drones with Artificial Intelligence

The term Artificial intelligence is now routinely used in the Drone industry.

The goal of drones and artificial intelligence is to make efficient use of large data sets as automated and seamless as possible.

A large amount of data nowadays is collected by drones in different forms.

This amount of data is very difficult to handle, and proper tools and techniques are required to turn the data to a usable form.

Combination of drones with AI has turned out to be very astounding and indispensable.

AI describes the capability of machines that can perform sophisticated tasks which have characteristics of human intelligence and includes things like reasoning, problem-solving, planning and learning.

Future with Drones and AI

In just a few years, drones have influenced and redefined a variety of industries.

When on the one hand the business tycoons believe that automated drones are the future, on the other hand, many people are threatened by the possibility of this technology becoming wayward. This belief is inspired by many sci-fi movies like The Terminator, Blade Runner and recently Avengers: The Age of Ultron.

What happens when a robot develops a brain of its own? What happens if they realize their ascendancy? What happens if they start thinking of humans as an inferior race? What if they take up arms?!

“We do not have long to act,” Elon Musk, Stephen Hawking, and 114 other specialists wrote. “Once this Pandora’s box is opened, it will be hard to close.”

Having said that, it is the inherent nature of humans to explore and invent. The possibilities that AI-powered drones bring along are too charming and exciting to let go.

At Bridged AI we are not only working on the goal of utilising AI-powered drone data but also helping other AI companies by creating curated data sets to train machine learning algorithms for various purposes — Self-driving Cars, Facial Recognition, Agri-tech, Chatbots, Customer Service bots, Virtual Assistants, NLP and more.

The need for quality training data | Blog | Bridged.o

What is training data? Where to find it? And how much do you need?

Artificial Intelligence is created primarily from exposure and experience. In order to teach a computer system a certain thought-action process for executing a task, it is fed a large amount of relevant data which, simply put, is a collection of correct examples of the desired process and result. This data is called Training Data, and the entire exercise is part of Machine Learning.

Artificial Intelligence tasks are more than just computing and storage or doing them faster and more efficiently. We said thought-action process because that is precisely what the computer is trying to learn: given basic parameters and objectives, it can understand rules, establish relationships, detect patterns, evaluate consequences, and identify the best course of action. But the success of the AI model depends on the quality, accuracy, and quantity of the training data that it feeds on.

The training data itself needs to be tailored for the end-result desired. This is where Bridged excels in delivering the best training data. Not only do we provide highly accurate datasets, but we also curate it as per the requirements of the project.

Below are a few examples of training data labeling that we provide to train different types of machine learning models:

2D/3D Bounding Boxes

2D/3D bounding boxed | Blog | Bridged.co

Drawing rectangles or cuboids around objects in an image and labeling them to different classes.

Point Annotation

Point annotation | Blog | Bridged.co

Marking points of interest in an object to define its identifiable features.

Line Annotation

Line annotation | Blog | Bridged.co

Drawing lines over objects and assigning a class to them.

Polygonal Annotation

Polygonal annotation | Blog | Bridged.co

Drawing polygonal boundaries around objects and class-labeling them accordingly.

Semantic Segmentation

Semantic segmentation | Blog | Bridged.co

Labeling images at a pixel level for a greater understanding and classification of objects.

Video Annotation

Video annotation | Blog | Bridged.co

Object tracking through multiple frames to estimate both spatial and temporal quantities.

Chatbot Training

Chatbot training | Blog | Bridged.co

Building conversation sets, labeling different parts of speech, tone and syntax analysis.

Sentiment Analysis

Sentiment analysis | Blog | Bridged.co

Label user content to understand brand sentiment: positive, negative, neutral and the reasons why.

Data Management

Cleaning, structuring, and enriching data for increased efficiency in processing.

Image Tagging

Image tagging | Blog | Bridged.co

Identify scenes and emotions. Understand apparel and colours.

Content Moderation

Content moderation | Blog | Bridged.co

Label text, images, and videos to evaluate permissible and inappropriate material.

E-commerce Recommendations

Optimise product recommendations for up-sell and cross-sell.

Optical Character Recognition

Learn to convert text from images into machine-readable data.


How much training data does an AI model need?

The amount of training data one needs depends on several factors — the task you are trying to perform, the performance you want to achieve, the input features you have, the noise in the training data, the noise in your extracted features, the complexity of your model and so on. Although, as an unspoken rule, machine learning enthusiasts understand that larger the dataset, more fine-tuned the AI model will turn out to be.

Validation and Testing

After the model is fit using training data, it goes through evaluation steps to achieve the required accuracy.

Validation & testing of models | Blog | Bridged.co

Validation Dataset

This is the sample of data that is used to provide an unbiased evaluation of the model fit on the training dataset while tuning model hyper-parameters. The evaluation becomes more biased when the validation dataset is incorporated into the model configuration.

Test Dataset

In order to test the performance of models, they need to be challenged frequently. The test dataset provides an unbiased evaluation of the final model. The data in the test dataset is never used during training.

Importance of choosing the right training datasets

Considering the success or failure of the AI algorithm depends so much on the training data it learns from, building a quality dataset is of paramount importance. While there are public platforms for different sorts of training data, it is not prudent to use them for more than just generic purposes. With curated and carefully constructed training data, the likes of which are provided by Bridged, machine learning models can quickly and accurately scale toward their desired goals.

Reach out to us at www.bridgedai.com to build quality data catering to your unique requirements.