Tag Archive : conversational ai

/ conversational ai

Virtual Assistants - Alexa, Siri, Google Assistant

Siri was introduced as a feature of the iPhone 4S in 2010. While it could only answer simple questions such as “What’s today’s weather like?” and “Who is Barack Obama?”, users praised the potential of the new voice assistant. Quite a feat for that time for a virtual assistant.

Expectations were high, and Siri fell short. Users complained about inaccurate responses to simple questions or commands. If Siri didn’t know the answer to a question, she’d crack a bad joke, which can seem like an unacceptable excuse for not having the ability to answer a question.

While Apple made improvements to its voice assistant, it wasn’t able to meet a lot of high expectations, and that frustrated users.

Alexa

Three years later, Amazon introduced its own voice assistant named Alexa, and it was instantly pitted against Apple’s alternative. Users observed that Alexa was quicker with responses, and was answering more questions right than wrong. Alexa fell short next to Siri when it comes to the fluidity and flow of requests and conversations. Siri could respond to commands better, and it had no problems understanding multiple sentence structures that conveyed the same message.

In 2016, Google came out with an answer to Siri and Alexa in the form of Google Assistant. It became the gold standard for how natural language processing (NLP) should be implemented with a voice assistant. The drawback of Google Home was that it didn’t have the broad integrations that Alexa had with Amazon’s devices.

These three voice assistants are the most popular in the market and each of them has their own strengths and weakness. But, how exactly do they stand against each other? 

The main tests we will conduct for these voice assistants are commands, conversation flow, music requests, home automation, and technology. MKBHD and Undecided with Matt Farell have given us interesting demonstrations and questions that can be used to test each of these three voice assistants. Let’s compare them using the following parameters:

Commands

Voice assistants started off as devices that could answer simple questions such as the time and the weather. Accuracy of response is key here and speed is an additional bonus.

What’s the weather?

Siri, Alexa, and Google Home have no problem answering this. Google tends to have a slight delay in its response generally, but nothing that could test a user’s patience.

How far away is London?

Siri and Google answered this right in miles as the crow flies, while Alexa provided an inaccurate response, or the answer to a different London (there are 29 places in the world called London). 

Conversation Flow 

When humans have conversations, the talking points build naturally and flow from one topic to another seamlessly. For a voice assistant, understanding context while having a conversation is key. 

Conversation

The following questions were asked one after the other to each voice assistant separately.

Who is the 45th President of the United States?

All three voice assistants provide the right answer. Siri cites the source and asks users if they’d like more information.

Where is he from?

When asked immediately after the previous question, Siri and Google fail. Alexa seems to handle context better than its two competitors.

Music

Since all voice assistants communicate with speakers, they need to understand song, artist and album requests. But before we get into their ability to play a track on-demand, its important to note that each voice assistant only plays music from a select set of streaming services. Alexa wins here as it plays from most major services. Google works only with Google Play Music, YouTube Music, Spotify, and Deezer. And Siri, not surprisingly, only plays from Apple Music.

Play Get Lucky by Daft Punk

Simple task. No losers here.

Play the song that goes “like the legend of the phoenix”

Alexa fails here while Siri and Google Assistant get it right.

Home Automation

Home automation refers to command-based control over home appliances such as fans, den lights, television, heaters, etc. Here’s how the voice assistants fared with the following two questions.

Turn off the den lights

All assistants successfully turned the lights off. 

Set the room temperature to 70 F

Google Assistant and Siri got this right, while Alexa adjusted the room temperature to a value between 65 and 70. 

Technology

Siri primarily works on Natural Language Processing (NLP) integrated with Machine Learning (ML), and voice recognition. Alexa operates on similar tech such as Automated Speech Recognition (ASR), and Natural Language Understanding (NLU). The technology isn’t too different from google either, its voice assistant employs NLP and ML.

Yes, the three voice assistants use ML and NLP to understand what the user is saying and to make suggestions or respond to the user’s language input. While the primary technology is the same or at least similar, the end result is what separates the three. As observed in the tasks assigned to them earlier, certain aspects of each voice assistant’s tech, such as the ability to understand speech patterns and words,  give them an advantage and a disadvantage.

Conclusion

The aim isn’t to be diplomatic, but there isn’t exactly a winner among the three. All the voice assistants can, for the most part, do the same things. Alexa has the largest home-integration options among the three, while Google Assistant and Siri are a lot more natural to talk to. 

Virtual Assistants

If you’re big on home automation and having wide music streaming options, Alexa is the voice assistant for you.

If you find yourself comfortable with Google’s streaming services such as Google Music and Youtube, Google Assistant is a smart pick. It also comes with a formidable range of home automation.

And finally, if your household is equipped with Apple’s products, it’s a no brainer to pick Siri, who’s device also has the best speakers among the three. Siri also has an advantage concerning privacy, as it encrypts all data, unlike its competitors that use it for targetted ad campaigns.

As a consumer, your goal is to see which one of these fits your requirement and aligns with what you’re looking for from a voice assistant.

Understanding What Is Conversational AI

For the last couple of hundred years, the total of what correspondence has been verbal, composed, or visual. We talked with our mouths, hands, and utilizing different mediums like braille or a PC. Discussions, specifically, required two distinct things.

Various people and an approach to impart. Things have since taken a noteworthy improvement. We have now opened better approaches to discuss legitimately with our innovation in a conversational setting utilizing a conversational chatbot.

Conversational AI alludes to the utilization of informing applications, discourse-based collaborators and chatbots to computerize correspondence and make customized client encounters at scale. Countless individuals use Facebook Messenger, Kik, WhatsApp and other informing stages to speak with their loved ones consistently. Millions more are exploring different avenues regarding discourse-based colleagues like Amazon Alexa and Google Home.

Applications of Conversational AI

Accordingly, informing and discourse-based stages are quickly uprooting conventional web and portable applications to turn into the new vehicle for intuitive discussions. At the point when joined with robotization and man-made reasoning (AI), these associations can interface people and machines through menial helpers and chatbots.

However, the genuine intensity of conversational AI lies in its capacity to all the while complete exceptionally customized connections with huge quantities of individual clients. Conversational AI can on a very basic level change an association, furnishing more methods for speaking with clients while encouraging more grounded communications and more noteworthy commitment.

Human-made consciousness is a term we’ve started to turn out to be exceptionally acquainted with. When covered inside your most-loved science fiction motion picture, AI is currently a genuine, living, powerhouse of its own.

Conversational AI is in charge of the rationale behind the bots you manufacture. It’s the cerebrum and soul of the chatbot. It’s what enables the bot to carry your clients to a particular objective. Without conversational AI, your bot is only a lot of inquiries and answers.

Conversational AI

Few Examples Of Conversational AI

Facebook Messenger

Facebook has bounced completely on the conversational trade temporary fad and is wagering enormous that it can transform its mainstream Messenger application into a business informing powerhouse.

The organization originally incorporated shared installments into Messenger in 2015, and after that propelled a full chatbot API so organizations can make cooperations for clients to happen inside the Facebook Messenger application. You can request blooms from 1–800-Flowers, peruse the most stylish trend and make buys from Spring, and request an Uber, all from inside a Messenger talk.

Operator

Administrator considers itself a “demand organize” expecting to “open the 90% of business that is not on the web.” The Operator application, created by Uber fellow benefactor Garrett Camp, interfaces you with a system of “administrators” who act like attendants who can execute any shopping-related solicitation.

You can request show passes, get blessing thoughts, or even get inside plan proposals for new furnishings. Administrator is by all accounts situating itself towards “high thought” buys, greater ticket buys requiring more research and skill, where its administrators can increase the value of an exchange.

Administrator’s specialists are a blend of Operator workers, in-store reps, and brand reps. The organization is additionally creating man-made consciousness to help the course ask for. Almost certainly the administration will wind up more astute after some time, joining AI for productivity and human mastery for quality suggestions.

Amazon Echo

Amazon’s Echo gadget has been an unexpected hit, coming to over 3M units sold in under a year and a half. Albeit some portion of this achievement can be ascribed to the gigantic mindfulness building intensity of the Amazon.com landing page, the gadget gets positive surveys from clients and specialists the same and has even incited Google to build up its own adaptation of a similar gadget, Google Home.

What does the Echo have to do with conversational business? While the most widely recognized utilization of the gadget incorporates playing music, making educational inquiries, and controlling home gadgets, Alexa (the gadget’s default addressable name) can likewise take advantage of Amazon’s full item inventory just as your request history and brilliantly complete directions to purchase stuff. You can re-request normally requested things, or even have Alexa walk you through certain alternatives in buying something you’ve never requested.

Snapchat Discover + Snapcash

Brands are falling over themselves to connect to Snapchat, and the ultra-well known informing application among youngsters and Millennials has as of late been offering some enticing sign that it will end up being a considerably all the more convincing internet business stage sooner rather than later.

In 2015, Snapchat propelled Snapcash, a virtual wallet which enables clients to store their charge card on Snapchat and send cash between companions with a basic message.

While this was a restricted test, it demonstrates that Snapchat sees potential in empowering direct trade (likely satisfied through Snapcash installments) inside the Snapchat application, opening the entryway to many fascinating better approaches to brands to interface and offer items to Snapchatters.

AppleTV and Siri

With a year ago’s invigorate of AppleTV, Apple brought its Siri voice partner to the focal point of the UI. You would now be able to ask Siri to play your preferred TV appears, check the climate, look for and purchase explicit kinds of motion pictures, and an assortment of other explicit errands.

Albeit a long ways behind Amazon’s Echo as far as expansiveness of usefulness, Apple will no uncertainty grow Siri’s joining into AppleTV, and its reasonable that the organization will present another adaptation of AppleTV that all the more legitimately contends with the Echo, maybe with a voice remote control that is continually tuning in for directions.

Businesses and conversational AI

Organizations can utilize Conversational AI to robotize clients confronting touchpoints all over – via web-based networking media stages like Facebook and Twitter, on their site, their application or even on voice aides like Google Home. Conversational AI frameworks offer an increasingly clear and direct pipeline for clients sort issues out, address concerns and arrive at objectives.

Both the terms ‘Chatbot‘ and ‘Conversational AI’ have a similar significance.

How It Works To Engage Customers

1) It’s convenient, all day, every day

The greatest advantage of having a conversational AI arrangement is the moment reaction rate. Noting inquiries inside an hour means 7X greater probability of changing over a lead. Clients are bound to discuss a negative encounter than a positive one. So stopping a negative survey directly from developing in any way is going to help improve your item’s image standing.

2) Customers incline toward informing

The market shapes client conduct. Gartner anticipated that ‘40% of versatile collaborations will be overseen by shrewd specialists by 2020. ’ Every single business out there today either has a chatbot as of now or is thinking about one. 30% of clients hope to see a live visit alternative on your site. 3 out of 10 shoppers would surrender telephone calls to utilize informing. As an ever-increasing number of clients start anticipating that your organization should have an immediate method to get in touch with you, it bodes well to have a touchpoint on a detachment.

3) It’s connecting with and conversational

We’ve just lauded the advantages of having a direct hotline for clients to contact you. Be that as it may, the conversational angle is the thing that separates this strategy from some other.

Chatbots make for incredible commitment devices. Commitment drives tenacity, which drives retention — and that, thus, drives development.

4) Scalability: Infinite

Chatbots can quickly and effectively handle an enormous volume of client questions without requiring any expansion in group size. This is particularly helpful on the off chance that you expect or abruptly observe a huge spike in client questions. A spike like this is a catastrophe waiting to happen in case you’re totally subject to a little group of human operators.

How Businesses Can Use Conversational AI

Your business is speaking with a client for the duration of the time they’re utilizing your item. As far as we can tell conveying conversational AI answers for undertakings, we’ve seen that some utilization cases can use such innovation superior to other people.

Our rundown of the best performing use cases is underneath:

  • Ushering a client in (Lead Generation): Haptik’s Lead Bots have seen 10Xbetter change rates contrasted with standard web structures.
  • Answer questions and handle grumblings when they come in (Customer Support): Gartner predicts that by 2021, 25% of endeavors over the globe will have a remote helper to deal with help issues.
  • Keeping current clients glad (Customer Engagement): Our customers have seen a 65% expansion in degrees of consistency essentially by stopping an intuitive utility chatbot inside their application.
  • Learning from clients to improve your item after some time (Feedback and Insights): Customers are 3X bound to impart their input to a Bot than fill study structures.

Organizations are no special case to this standard, as an ever-increasing number of clients presently expect and incline toward talk as the essential method of correspondence, it bodes well to use the numerous advantages Conversational AI offers. It’s not only for the client, but your business can also decrease operational expenses and scale tasks hugely as well.

By guaranteeing that you’re accessible to tune in and converse with your client whenever of the day, Conversational AI guarantees that your business consistently wins good grades for commitment and availability. So, Conversational AI works all over the place.

Any business in any space that has a client touchpoint can utilize a Conversational virtual specialist. It’s better for clients and for the business. Nothing else matters.

The need for high-quality chatbot training data

Technology enhancements in computer-human interaction have allowed us to seamlessly interact with computers. Conversational AI has pampered us with privileges such as instant responses, 24/7 access, and a user-friendly medium for conversation. From setting up medical appointments to online check-ins for flights, AI chatbots have gained prominence.

what is a chatbot

If you’re unaware, a chatbot is a software that can simulate a conversation with a real-life user. It conducts conversation either by chatting or speaking.

The major challenges faced while developing a chatbot include the following:

  • Developing it to perceive text/voice messages.
  • Training it to understand how to respond to such messages
  • Maintaining conversational etiquette

The solution to the above challenges lies in high-quality training data. Training data is the lifeblood of AI/ML models, and its importance is no lesser for conversational AI. Chatbot datasets usually comprise a large volume of query-response pairs (in audio or text) that the chatbot can use for developing its interaction skills.

Here’s why there’s a need for high-quality chatbot training data:

Understanding human language

Human interaction is complicated, and that has a lot to do with how rich and diverse human languages are. This means chatbots need to understand the nitty-gritty of grammar and conversational flow. Conversational datasets allow chatbots to learn from a large number of examples, from which they can learn sentence construction. Such datasets also allow chatbots to learn cases of grammar rule exemptions (as is commonly found in the English language).

Tone detection

As native speakers of a language, we understand which words signify which tones. We understand which statements represent happiness or sadness and pleasure or anger. While these things are simple to us, they need to be ingrained into a chatbot. We can’t have a chatbot responding to an “I’ve been having a bad day.” with an “I’m so happy for you!”

Understanding tone matters a lot while we communicate, and it ought to matter for intelligent beings trying to interact with us.

Clean conversational data

If the training datasets aren’t clean or free of issues, do not expect your AI/ML model to function as intended. With conversational AI, the clarity and cleanness of its training data determines its ability to interact fluently with people. 

Common issues with chatbot training data include:

  • Wrong punctuations
  • Inaccurate word choices
  • Illegible sentences

Unclean conversational datasets usually suffer from grammar issues. Fixing those issues goes a long way in ensuring clean chatbot responses.

Relevant conversational data

Every chatbot is tackling a particular use case. Companies use chatbots for customer service (by food delivery, e-commerce, and banking services among many others), health diagnoses, and personal assistants.

For a conversational AI system to become any of the above, it needs to be fed the relevant datasets. If the chatbot at hand needs to support banking customers, it needs to understand the various processes customers perform and the issues the face. Conversational datasets that depict this help chatbots understand how to interact with such customers and it also trains them to solve customer queries and take action and responsibility.

Conclusion 

The process of formulating a response by a chatbot

A chatbot gets defined by the training data it consumes. It truly becomes what it eats. Chatbots are being adopted all across numerous areas of our lives, and results have shown that we like interacting with these intelligent beings. They make the interaction between people and organizations simpler. They enhance customer service and improve overall efficiency. But, building systems that can interact effectively with people brings about the need to learn how to be like us. That involves time taken to understand what it means to be human, and high-quality conversational datasets hold the answer to achieving that.