Tag Archive : computer vision

/ computer vision

Applications of Computer Vision in Healthcare

Computer vision is a field that explores ways to make computers identify useful information from images and videos. Think of it as training computers to see as humans do. While this technology has numerous applications in fields such as autonomous vehicles, retail supermarkets, and agriculture, let’s focus on the ways computer vision can benefit healthcare.

In the present scenario, doctors rely on their educated perception to treat patients. Since doctors are also prone to human error, computer vision can guide them through their diagnosis, and thus increase the treatment quality and the doctor’s focus on the patient. Further, patients can have access to the best healthcare services available, all through the swiftness and accuracy of computer vision. While still in its nascent stage, computer vision has already revealed ways in which it can improve multiple aspects of medicine. Here are a few notable ones:

Swift diagnosis:

Applications of Computer Vision

Many diseases can only be treated if they are diagnosed promptly. Computer vision can identify symptoms of life-threatening diseases early on, saving valuable time during the process of diagnosis. Its ability to recognize detailed patterns can allow doctors to take action swiftly, thus saving countless lives.

A British startup, Babylon Health, has been working to improve the speed of diagnosis using computer vision. To see this goal through, they have developed a chatbot which asks health-related questions to patients, whose responses are then, in turn, sent to a doctor. To pull out useful information from patients, the chatbot employs NLP algorithms.

In another example, scientists at the New York City-based Mount Sinai have developed an artificial intelligence capable of detecting acute neurological illnesses, such as hemorrhages or strokes. Also, the system is capable of detecting a problem from a CT scan in under 1.2 seconds — 150x faster than any human.

To train the deep neural network to detect neurological issues, 37,236 head CT scans were used. The institution has been using NVIDIA’s graphics processing units to improve the functioning and efficiency of their systems. 

Computer vision also allows doctors to spend less time analyzing patient data, and more time with the patients themselves, offering helpful and focused advice. This leads to improved efficiency of healthcare and can help in enabling doctors to treat more patients per year.

Health monitoring:

The human body goes through regular changes, but some of the issues it faces on the surface can, at times, represent symptoms of impending disease. These can often be overlooked through human error. With computer vision, there exists a quick way to access a variety of the patient’s health metrics. This information can help patients make faster health decisions and doctors make more well-informed diagnoses. Surgeries could also benefit from such technology.

For example, let’s consider the case of childbirth, based on the findings of the Orlando Health Winnie Palmer Hospital for Women and Babies. The institute has developed an artificial intelligence tool that employs computer vision to measure the amount of blood women lose during childbirth. Since its usage, they have observed that doctors often overestimate blood loss during delivery. As a result, computer vision allows them to treat women more effectively after childbirth.

There are also efforts such as AiCure, another New York-based startup that uses computer vision to track whether patients undergoing clinical trials are adhering to their prescribed medication using facial recognition technology. The goal behind this project is to reduce the number of people who drop out of clinical trials, aka attrition. This can lead to a better understanding of how medical care affects patients, and why.

Computer vision, paired with deep learning, can also be used to read two-dimensional scans and convert them into interactive 3D models. The models can then be viewed and analyzed by healthcare professionals to gain a more in-depth understanding of the patient’s health. Also, these models can provide more intuitive details than multiple stacked 2D images from a wide variety of angles.

Significant developments have taken place in dermatology. Computers are better than doctors at identifying potential health hazards in human skin. This allows for the early detection of skin diseases and personalized skincare options.

Further, no time is lost laboring over hand-written patient reports, since computer vision is capable of automatically drawing up accurate reports using all of the available patient data.

Precise diagnosis:

 The accuracy that computer vision provides eliminates the risk that comes with human judgment. These reliable systems can quickly detect minute irregularities that even skilled doctors could easily miss. 

When these kinds of symptoms are identified quickly, it saves patients the trouble of dealing with complicated procedures later on. Thus, it has the potential to minimize the need for complex surgical procedures and expensive medication.

One example of this would be computer vision’s use in radiology. Computer vision systems can help doctors take detailed X-rays and CT scans, with minimal opportunity for human error. These AI systems allow doctors to take advantage of the systems’ exposure to thousands of historical cases, which can be helpful in scenarios that doctors might not have come across before. The common uses of computer vision within radiology include detecting fractures and tumors.

Preemptive strategies

Computer Vision In Healthcare

Using machine learning, computer vision systems can sift through hundreds of thousands of images, learning with each scan how to better analyze and detect symptoms, possibly even before they present themselves.

This allows the medical professional to pre-emptively treat patients for symptoms of diseases they could develop in the future. Using input data from thousands of different sources, these AI systems can learn what leads to disease in the first place.

Present barriers

While computer vision is a revolutionary technology that will likely change healthcare as it is known today, there are some notable problems associated with the technology.

Firstly, interoperability. The computer vision AI from one region or hospital may not necessarily yield accurate or reliable results for patients outside of its sample data set. Of course, the machine learns with time, but overcoming this barrier could lead to faster adoption of this ground-breaking technology.

Also, there are privacy concerns around the digitization of patient medical data and its provision to artificial intelligence systems. This data vault needs to be stored in secure storage which can be easily accessed by the system, to avoid users with malicious intent.

And these systems aren’t perfect. Even the smallest margin of error cannot be tolerated in this space, because the consequences for wrong diagnoses are very real. These are human lives being dealt with, and the artificial intelligence systems aren’t responsible for providing treatment, only suggesting it. 

Also, there may be cases where the healthcare provider comes up with a diagnosis that conflicts with the computer vision system, leaving patients with a tough decision to make, and the doctors with all the responsibility.

Conclusion:

When computer vision is employed effectively in healthcare, it truly holds the potential to improve diagnoses and the standard of healthcare worldwide. This makes sense because doctors rely on images, scans, patient symptoms, and reports to make health-related decisions for their patients. The sheer abundance of use cases employed by computer vision systems make their analysis accurate. Thus, it allows doctors to make these crucial decisions with confidence.

Computer vision systems also allow for quality-of-life improvements, such as less time spent drafting reports, analyzing scans and procuring data. These systems could even be deployed remotely, enabling patients to receive professional medical attention from areas that don’t have easy access to healthcare services. All this lets doctors spend more time with patients, which is what healthcare should be about.

Computer Vision Advances and Challenges

Computer vision refers to the field of training computers to visualize data as humans do. This technology has the potential to reach a stage wherein computers can understand images and videos better than humans. Also, the use cases are practically limitless, despite the technology still existing in its nascent stage of exploration. 

Computer Vision

Computer vision as a concept has been around since the 1950s. In its infancy, computers were trained to distinguish between shapes such as squares and triangles. Later on, training shifted towards distinguishing between typed and handwritten text.

Reasons for popularity

The main reason for computer vision’s popularity is its potential to revolutionize many every-day aspects of our lives. Computer vision drives autonomous vehicles and allows them to distinguish between traffic signal lights, medians, pedestrians, etc. It can also be used in healthcare, for detecting tumors in advance and identifying skin issues. 

There is a huge opportunity for employing computer vision in agriculture as well. It can be used to monitor the quality of crops, locate weeds and pests, based on which farmers can take action. 

Applications of Computer Vision

How about facial recognition? Yes, computer vision is already being used in new-generation smartphones to detect the user’s face. Even QR code scanning is an example of the adoption of computer vision. This technology can also be used in supermarkets to identify which users are making which purchases. 

Amazon is testing a convenience store called Amazon Go, which doesn’t have a billing counter. Instead, the store uses computer vision to identify customers and the items they add to their cart. A bill is sent to them online through the Amazon Go App once they leave the store with these items.

Advantages of computer vision

While computer vision has a lot more to achieve, it has already achieved ground-breaking innovations. That makes sense because this technology brings a lot of advantages to daily and professional life. 

Reliability

The human eye grows tired of scanning its environment. Factors such as fatigue and health come into the picture. With computer vision, this is eliminated because cameras and computers never get tired. Since the human factor is removed, it is easier to rely on the result. 

Numerous use cases 

From healthcare and agriculture to banking and automobiles, if explored smartly, computer vision can be employed in almost every aspect of our lives. These machines learn by viewing thousands of labeled images, thus understanding the traits of what’s being visualized. The same primary computer vision technology that evaluates the quality of packages in a factory can also be used to identify trends in the stock market.

Cost reduction

Computer vision can be used to increase productivity in operations and eliminate faulty products from hitting the shelves. This technology will also allow companies to manage their teams efficiently by identifying staff that could be used for other activities that require attention. For example, in Amazon fulfillment centers, productivity among workers is measured to improve efficiency and resource allocation.

Challenges faced by Computer Vision

Every emerging technology starts with a few significant drawbacks. From this technology’s development to its impact on society, there is a lot to look forward to, but a lot to be concerned about as well.

The challenge of making systems human-like

As much as computer vision is making huge leaps in its progress, it is difficult to simulate something as complex as the human visual system. The human brain-eye coordination is a marvel to behold, and its ability to understand its environment and make decisions is unparalleled by computer vision systems, at least at the moment.

Tasks such as object detection are complicated since objects of interest in images and videos may appear in a variety of sizes and aspect ratios. Also, a computer vision system will have to distinguish one object from multiple others within its view. This is a skill that computers are taking time to get better at.

Computer vision also hasn’t reached the stage wherein it can identify the difference between handwritten and typed text. This is due to the variety of handwriting styles, curves, and shapes employed while writing.

Privacy

This is arguably the biggest social threat that computer vision poses. The qualities that make computer vision effective are also the concerns of humans that value their privacy. With computers learning from thousands and thousands of images and videos, computers are getting better at recognizing individuals by their facial features, and everyone’s information is stored on a cloud.

Computer vision can track people’s whereabouts and monitor their habits. With such information, governments and businesses could be lured into penalizing and rewarding workers based on their actions. China, a nation with strong AI capabilities, is already looking to use computer vision to monitor its citizens and provide information that funds its controversial social credit system. On the other hand, San Fransisco has banned the use of facial recognition technology by the police and other related agencies.

It is psychologically unhealthy for humans to know that they are constantly being observed and monitored during every aspect of their lives. It would be interesting to see how governments intend to tackle this issue.

Final Thoughts

Computer vision’s progress can make people truly feel like they’re living through a sci-fi film. The future of this technology is filled with a range of use cases to be catered to. Numerous businesses within this realm are collecting millions of images and videos that can be used to train their computer vision systems. Also, existing businesses are exploring ways to employ computer vision into their operations. 

Challenges of Computer Vision

Computer vision has its present challenges, but the humans working on this technology are steadily improving it. Every emerging technology brings its fair share of advantages and disadvantages. While it is important to celebrate its progress, it is equally important to gauge its potential negative effect on society. This is the only way to ensure that computer vision makes our lives more comfortable and less constrained.

Computer vision and image annotation | Blog | Bridged

Understanding the Machine Learning technology that is propelling the future

Any computing system fundamentally works on the basic concepts of input and output. Whether it is a rudimentary calculator, our all-requirements-met smartphone, a NASA supercomputer predicting the effects of events occurring thousands of light-years away, or a robot-like J.A.R.V.I.S. helping us defend the planet, it’s always a response to a stimulus — much like how we humans operate — and the algorithms which we create teach the process for the same. The specifications of the processing tools determine how accurate, quick, and advanced the output information can be.

Computer Vision is the process of computer systems and robots responding to visual inputs — most commonly images and videos. To put it in a very simple manner, computer vision advances the input (output) steps by reading (reporting) information at the same visual level as a person and therefore removing the need for translation into machine language (vice versa). Naturally, computer vision techniques have the potential for a higher level of understanding and application in the human world.

While computer vision techniques have been around since the 1960s, it wasn’t till recently that they picked up the pace to become very powerful tools. Advancements in Machine Learning, as well as increasingly capable storage and computational tools, have enabled the rise in the stock of Computer Vision methods.

What follows is also an explanation of how Artificial Intelligence is born.

Understanding Images

Machines interpret images as a collection of individual pixels, with each colored pixel being a combination of three different numbers. The total number of pixels is called the image resolution, and higher resolutions become bigger sizes (storage size). Any algorithm which tries to process images needs to be capable of crunching large numbers, which is why the progress in this field is tangential to advancement in computational ability.

Understanding images | Blog | Bridged.co

The building blocks of Computer Vision are the following two:

Object Detection

Object Identification

As is evident from the names, they stand for figuring out distinct objects in images (Detection) and recognizing objects with specific names (Identification).

These techniques are implemented through several methods, with algorithms of increasing complexity providing increasingly advanced results.

Training Data

The previous section explains the architecture behind a computer’s understanding of images. Before a computer can perform the required output function, it is trained to predict such results based on data that is known to be relevant and at the same time accurate — this is called Training Data. An algorithm is a set of guidelines that defines the process by which a computer achieves the output — the closer the output is to the expected result, the better the algorithm. This training forms what is called Machine Learning.

This article is not going to delve into the details of Machine Learning (or Deep Learning, Neural Networks, etc.) algorithms and tools — basically, they are the programming techniques that work through the Training Data. Rather, we will proceed now to elaborate on the tools that are used to prepare the Training Data required for such an algorithm to feed on — this is where Bridged’s expertise comes into the picture.

Image Annotation

For a computer to understand images, the training data needs to be labeled and presented in a language that the computer would eventually learn and implement by itself — thus becoming artificially intelligent.

The labeling methods used to generate usable training data are called Annotation techniques, or for Computer Vision, Image Annotation. Each of these methods uses a different type of labeling, usable for various end-goals.

At Bridged AI, as reliable players for artificial intelligence and machine learning training data, we offer a range of image annotation services, few of which are listed below:

2D/3D Bounding Boxes

2D and 3d bounding boxes | Blog | Bridged.co

Drawing rectangles or cuboids around objects in an image and labeling them to different classes.

Point Annotation

Point annotation | Blog | Bridged.co

Marking points of interest in an object to define its identifiable features.

Line Annotation

Line annotation | Blog | Bridged.co

Drawing lines over objects and assigning a class to them.

Polygonal Annotation

Polygonal annotation | Blog | Bridged.co

Drawing polygonal boundaries around objects and class-labeling them accordingly.

Semantic Segmentation

Semantic segmentation | blog | Bridged.co

Labeling images at a pixel level for a greater understanding and classification of objects.

Video Annotation

Video annotation | blog | Bridged.co

Object tracking through multiple frames to estimate both spatial and temporal quantities.

Applications of Computer Vision

It would not be an exaggeration to say computer vision is driving modern technology like no other. It finds application in very many fields — from assisting cameras, recognizing landscapes, and enhancing picture quality to use-cases as diverse and distinct as self-driving cars, autonomous robotics, virtual reality, surveillance, finance, and health industries — and they are increasing by the day.

Facial Recognition

Facial recognition | Blog | Bridged.co

Computer Vision helps you detect faces, identify faces by name, understand emotion, recognize complexion and that’s not the end of it.

The use of this powerful tool is not limited to just fancying photos. You can implement it to quickly sift through customer databases, or even for surveillance and security by identifying fraudsters.

Self-driving Cars

Self-driving cars | Blog | Bridged.co

Computer Vision is the fundamental technology behind developing autonomous vehicles. Most leading car manufacturers in the world are reaping the benefits of investing in artificial intelligence for developing on-road versions of hands-free technology.

Augmented & Virtual Reality

Augmented and virtual reality | Blog | Bridged.co

Again, Computer Vision is central to creating limitless fantasy worlds within physical boundaries and augmenting our senses.

Optical Character Recognition

An AI system can be trained through Computer Vision to identify and read text from images and images of documents and use it for faster processing, filtering, and on-boarding.

Artificial Intelligence is the leading technology of the 21st century. While doomsday conspirators cry themselves hoarse about the potential destruction of the human race at the hands of AI robots, Bridged.co firmly believes that the various applications of AI that we see around us today are just like any other technological advancement, only better. Artificial Intelligence has only helped us in improving the quality of life while achieving unprecedented levels of automation and leaving us amazed at our own achievements at the same time. The Computer Vision mission has only just begun.