Tag Archive : ai misconceptions

/ ai misconceptions

8 common myths about machine learning

Artificial Intelligence and the idea of it has always been around be it research or sci-fi movies. But the advances in AI wasn’t drastic until recently. Guess what changed? The focus moved from vast AI to components of AI such as machine learning, natural language processing, and other technologies that make it possible.

Learning models which form the core of AI started being used extensively. This shift of focus to Machine Learning gave rise to various libraries and tools which make ML models easily accessible. Here are some common myths surrounding Machine Learning:

Machine Learning, Deep Learning, Artificial Intelligence are all the same

In a recent survey by TechTalks, it was discovered that more than 30% of the companies wrongly claim to use Advance Machine Learning models to improve their operations and automate the process. Most people use AI and ML synonymously. How different are AI, ML and Deep Learning?

Machine Learning is a branch of Artificial Intelligence which has learning algorithms powered by annotated data which learn through experiences. There are primarily two types of learning algorithms.

Supervised Learning algorithms draw patterns based on the input and output values of the datasets. It starts predicting the outputs from the training data sets with possible input and output values.

Unsupervised learning models look at all the data fed into the model and find out patterns in the data. It uses unstructured and unlabeled data sets.

Artificial Intelligence, on the other hand, is a very broad area of Computer Science, where robust engineering and technological advances are used to build systems that need minimal or no human intelligence. Everything from the auto-player in video games to predictive analytics used to forecast sales fall under the same roof using some Machine Learning algorithms

Deep Learning uses a set of ML algorithms to model abstraction in data sets with system architecture. It is an approach used to build and train neural networks.

All data is useful to train a Machine Learning model

Another common myth around Machine learning models is that all the data is useful to improve the outputs of the model. The raw data is never clean and representative of the outputs.

To train the Machine Learning models to learn the accurate outputs expected, data sets need to be labeled with relevance. Irrelevant data needs to be removed.

The accuracy of the model is directly correlated to the quality of the data sets. The quality of the trained data sets results in better accuracy rather than a huge amount of raw/unlabelled data.

Building an ML system is easy with unsupervised learning and ‘Black Box Models’

The most business decision will require very specific evaluation, to make strategic data-driven decisions. Unsupervised and ‘Black Box’ models use algorithms randomly and highlight data patterns making it biased towards patterns which aren’t relevant.

The usability and relevance of these patterns to the objective the business the focus is on are a lot less when these models are used. Black box systems do not reveal what patterns they have used to arrive at certain conclusions. Supervised or Reinforcement learning trained with curated, labeled data sets can surgically investigate the data and give us the desired outputs.

ML will replace people and kill jobs

The usual notion around any advanced technology is that it will replace people and make people jobless. According to Erik Brynjolfsson and Daniel Rock, with MIT, and TomMitchell of Carnegie Mellon University, ML will kill the automated or painfully redundant tasks, not jobs.

Humans will spend more time on decision making jobs rather than repetitive tasks which ML can take care of. The job market will see a significant reduction in repetitive job roles but the wave of ML, AI will create a new sector of jobs to handle the data, train it and derive outcomes based on the ML systems.

Machine Learning can only discover correlations between objects and not causal relationships

A common perception of Machine Learning is that it discovers easy correlations and not insightful outputs. Machine Learning used in conjunction with thematic roles and relationship models of NLP will provide rich insights. Contrary to common belief, ML can identify causal relationships. This is commonly used to try out different use cases and observing the consequences of the cases.

Machine learning can work without human intervention

Most decisions from the ML models will need human intelligence and intervention. For examples, an airlines company may adopt ML algorithms to get better insights and influence best ticket prices. Data sets are constantly updated and complex algorithms may be run on it.

But, to decide the price of a flight by the system itself has a lot of loopholes, the company will hire an analyst who will analyze the data and sets prices with the help of models and their analytical skills, not just relying on the model alone.

The reasoning behind the decision making is still a human intelligence one. Complete control should not be rested on models for optimal results.

Machine Learning is the same as Data mining

Data mining is a technique to examine databases and discover the properties of data sets. The reasons its often confused is because Data Analytics uses these data sets using data visualization techniques. Whereas, Machine Learning is a subfield which uses curated data sets to teach systems the desired outputs and make predictions.

There is similarity when unsupervised learning Ml models use datasets to draw insights from them, which is precisely what data mining does. Machine Learning can be used for data mining.

The common confusion between the two arises due to a new term being used extensively, Data Science. Most Data mining-focused professionals and companies are leaning towards using Data science and analytics now causing more confusion.

ML takes a few months to master and is simple

To be an efficient ML Engineer, a lot of experience and research is needed. Contrary to the hype, ML is more than importing existing libraries in languages and using Tensor Flow or Keras. These can be used with minimal training but takes an experienced hand to provide accuracy.

A lot of intense Machine Learning focussed products require intense research on topics and even coming up with approaches using methods that are in discussion at a university or research level. Already existing libraries solve very generic problems people are trying to solve and not really insightful data. A deeper understanding of algorithms is needed to create an accurate model with an improved f1(accuracy) score.

To sum up, there is an overlap of concepts and models in Machine Learning, Artificial Intelligence, Data Science and Deep Learning. However, the goal and science of the subfields vastly vary. To build completely automated AI systems, all the fields become crucial and play a distinct role.

5 common misconceptions about AI

Ever wondered what your life would be without those perky machines lying around which sometimes/most times replaced a significant part of your daily routine? In Terminology fancied by Scientists, we call them AI (Artificial Intelligence,) and in plain layman or lazy man terms that is us, we fancy calling them machines and bots.

Let’s define the exact meaning of AI in terms of science because I hate disappointing aspiring scientists out there who don’t take puns lightly. For those that do, welcome to the fraternity of loose and lost minds. Let’s get down to business, shall we?

Definition: Artificial Intelligence or machine intelligence, is intelligence demonstrated by machines in contrast to the natural intelligence displayed by humans. Colloquially, the term "artificial intelligence" is often used to describe machines (or computers) that mimic "cognitive" functions that humans associate with the human mind such as "learning" and "problem-solving.”

Isn’t it evident I copied the above definition from Wikipedia? And did your natural intelligence decipher the meaning of the definition stated above?

Let me introduce you to the lazy man definition of Artificial Intelligence. Like all engineering scholars, I will take the absolute pleasure of dismantling the words and assembling it together again.

Artificial – Non-Human, something that can’t breathe air or respond to a feeling. 

Intelligence – the ability to display intellect, sound reasoning, judgment, and a ready wit.

Put the two words together and voila! Artificially intelligent machines are capable of displaying or mimicking human intellect, sound reasoning, and judgment towards it's surrounding.

Now that we got the definition of AI out of the way, look around you, what do you see? What’s in your hands? Do you not spot a single electronic device or bots?

Things or machines work a lot differently in this era. You must be awestruck of the skyrocketing shiny monuments. The big bird moving 33,000ft above your head carrying humans from one country to another, hospitals treating the diseased and the ill with technology your mind can’t fathom.

Fast cars, microwave and yes, we no longer communicate using crows or pigeons we have cell phones!

Don’t be surprised if I reveal that these are the necessity and an extension to our lives. And no, we cannot live without them anymore.

Our purpose of life has changed drastically, growing crops and putting food on the table isn’t what give us lines on the forehead. We built replacement models that take care of that too. We are living in a fast lane where technology, eventually, will slingshot us to the moon or another planet.

With such a drastic rise in AI and the current trend where all companies want a piece of it, there are some misconceptions about AI as well. With this blog, I try to debunk the misconceptions highlighting both the positive and negative aspects of artificial intelligence.

“If these machines are handling even the simplest of tasks, what are people going to do? Is it the destruction of jobs?”

Fret not. If there is technological advancement, there are always career opportunities as it is the human mind that does the ‘thinking.’ You are the master of your creation.

In fact, in 2020 there will be 2.3 million new jobs available thanks to AI, which results in less muscle power and more brainpower.

“Can Artificial Intelligence solve any/all problems?“

This question is debatable, while AI is designed to assist and make our jobs easier, it cannot save a human being from rubbing off cancers and illness.

Human intelligence hasn’t discovered a way to program the bots to predict or diagnose illness proactively. One must remember, bots act on what is fed/programmed by humans.

“Is AI infallible?“

If you thought it was, then I have slightly bad news. Humans are in a common misconception assuming the machines are no less than perfection and display little to no mistake. The non-sentient systems are trained by us, data selected and curated by us, and human tendency is to make mistakes and learn from them.

Artificial Intelligence is just as good as the training data used, which is created by humans. Any mistake with the training data will reflect on the performance of the system and the technology will be compromised. Ensuring you use a high-quality training dataset is critical to the success of the AI system.

Speaking of data being compromised, during the 2016 presidential election campaign, we witnessed the information of US citizens being evaluated by gaining access to their social media accounts. To proactively block their social media feeds with ads that will prove to be of interest. Therefore, stealing away the votes from the opposition.

We call this “data/information manipulation.” Sadly, the downside of Artificial Intelligence.

“AI must be expensive.”

Well, implementing a fully automated system doesn’t come easy and doesn’t come cheap. But depending on the needs and goals of the organization, it may be entirely possible to adopt AI and get the desired results without breaking your treasure chest.

The key is for each business to figure out what they want and apply AI as needed, for their unique goals and company scale. If businesses can workout their scalability and incorporate the right Artificial intelligence, it can be economical in the long run.

“Will Artificial Intelligence be the end of humanity?”

We are a work in progress, standing at the foyer of technological advancements with a long way to go. But, much like the misconception about robots replacing humans in the workforce, the question is more of smoke in the mirror.

The AI in its current level is not fully capable of self-conscious and decision making. Don’t let Star Trek, Iron Man and Terminator movies fool you into believing bots will lose their nuts (literally and hypothetically) and foreshadow the destruction of humanity. On the flip side, it is the natural disasters the bots are being designed to protect us from.

Oh, look what’s in every body’s hand, it’s what we call a cell phone. A device primarily designed to communicate with people that are at a greater distance.

Communication takes place using microwaves, very different from sand waves. Look closely and you’ll see people doing weird things using their fingers on the cell phone and a weird thing hanging from their ears going through to the same device. Yes, these devices are their partners for life.

Here we are, say Konnichiwa to the lady, don’t touch her! She’s just a hologram.

Welcome to the National Museum of Emerging Science and Innovation simply known as the Miraikan (future museum) where obsessiveness over technology has led us to build a museum for itself.

There’s Asimo, the Honda robot and, what you’re looking at isn’t another piece of asteroid that struck earth years ago, it is Geo-Cosmos. A high-resolution globe displaying near real-time events of global weather patterns, ocean temperatures, and vegetation covering across geographic locations.

You must be contemplating why has mankind reached such level of advancement? Let’s go back to the last question “Will AI be the end of humanity?”

The seismometer, a device that responds and records the ground motions, earthquake, and volcanic eruptions. There are a lot of countries that have lost far too many lives to even comprehend the tragic events of active earthquakes.

This device is a way to predict and bring citizens of Japan to safe grounds. Artificial Intelligence will not be the end of humanity, it can, in fact, be the opposite and could be an answer to humanity’s biggest natural calamities and disasters.

The human mind is something to behold, from its complex neural nerves in the brain to the nerves connecting to every part of the body to achieve motor functions. To replicate or clone it using artificial chips and wires is nearly impossible in the current era but the determination we hold and our adamant nature drives us to dream, the dream of one day successfully cloning the human consciousness into nuts and bolts of a bot.

One day to look at the stars and send bots for space exploration. To look for a suitable second home in an event of space disasters that humans have no control over. And, why send bots into deep space and not humans to add a feather to the hat of achievement?

Simply because we breathe, we starve, and our very own nervous system advertently detects the brutal nature of space above the earth. In this case, Artificial Intelligence and robots are in fact helping humans explore the possibilities of life in outer space. Which is against the misconception that AI will be the end of humanity.

So, there we have it, all the major misconceptions about artificial intelligence and what the reality is. End of the day, it all comes down to how we incorporate artificial intelligence and what we use it for.

If used in the right way, there will be a revolution in the way humans work. Which makes it important for all of us to work on educating people about artificial intelligence and using it to make the world a better place.