Category: Technology of Tomorrow

Home / Category: Technology of Tomorrow

Latest Innovations in the field of AI & ML

Artificial Intelligence can replicate human intelligence to perform actions, logical reasoning, learning, perception, and creativity. An intelligent machine developed by humans to input requests and receive the desired output.

Machine Learning is an artificial intelligence subdiscipline and technique for developing self-learning computer systems. ML platforms are gaining popularity because of high definition algorithms that perform with the utmost accuracy.

Neural Networks a technique of Artificial Intelligence modeled similar to the human brain, can learn and keep improving with the experience and learns with each task.

Deep learning is unsupervised learning, the next generation of artificial intelligence computers that teach themselves to perform high-level thought and perception-based actions.

Market Size:

Global Machine Learning Market was valued at $1.58 billion in 2017 expected to reach $8.8 billion by 2022 and  $20.83 billion by 2024.

Artificial Intelligence predicted to create $3.9 trillion of value for business and cognitive and AI systems will see worldwide investments of $77.6 billion by 2022.

AI and ML have the capability of creating an additional value of $2.6 Trillion in Sales & Marketing and $2 Trillion in manufacturing and supply chain planning by the year 2020.

Unmanned ground vehicles have registered revenues of $1.01 billion globally, in 2018 and expected to reach $2.86 billion by 2024.

Autonomous Farm Equipment market worldwide is projected to reach over $86.4 Billion by the year 2025.

Key Players in Artificial Intelligence:

  • Apple
  • Nvidia Corporation
  • Baidu
  • Intel Corp.
  • Facebook
  • AlphaSense
  • Deepmind
  • iCarbonX
  • Iris AI
  • HiSilicon
  • SenseTime
  • ViSenze
  • Clarifai
  • CloudMinds

Industries Artificial Intelligence Serves:

  • Retail
  • HR & Recruitment
  • Education
  • Marketing
  • Public Relations
  • Healthcare and Medicine
  • Finance
  • Transportation
  • Insurance

Artificial Intelligence can be applied in:

  • Face Recognition
  • Speech Recognition
  • Image Processing
  • Data Mining
  • E-mail Spam Filtering
  • Trading
  • Personal Finance
  • Training
  • Job Search
  • Life and Vehicle Insurance
  • Recruiting Candidates
  • Portfolio Management
  • Consultation
  • Personalized marketing
  • Predictions

Key Players in Machine Learning

  • Google Inc.
  • SAS Institute Inc.
  • FICO
  • Hewlett Packard Enterprise
  • Yottamine Analytics
  • Amazon Web Services
  • BigML, Inc.
  • Microsoft Corporation
  • Predictron Labs Ltd.
  • IBM Corporation
  • Fractal Analytics
  • H2O.ai
  • Skytree
  • Ad text

Industries Machine Learning Serves:

  • Aerospace
  • BFSI
  • Healthcare
  • Retail
  • Information Technology
  • Telecommunication
  • Defense
  • Energy
  • Manufacturing
  • Professional Services

Machine Learning can be applied in:

  • Marketing
  • Advertising
  • Fraud Detection
  • Risk Management
  • Predictive analytics
  • Augmented & Virtual Reality
  • Natural Language Processing
  • Computer Vision
  • Security & Surveillance

Future of AI & ML:

Artificial Intelligence and Machine Learning can support in every task, predict the damages, ease the processes, bring better control and security to the applications and make businesses profitable. Overcome the challenges of every field with AI & ML technology.

In the future, the subsets of AI like Natural language generation, speech recognition, face recognition, text analytics, emotion recognition, and deep learning.

Natural Language Generation converts the data into text for computers to understand and communicate with the user. It can generate reports and summaries using applications created by Digital Reasoning, SAS, Automated Insights, etc.

Speech recognition understands the human language and these interactive systems respond using voice. The apps with voice assistants are preferred by many who don’t prefer text or have typing constraints and lets you pass on instructions while you are busy in other work, cooking, cleaning or driving, etc. E.g. Siri, Alexa, etc. Companies that offer speech recognition services are OpenText, Verint Systems, Nuance Communications, etc.

Virtual Agents interact with humans to provide better customer service and support. Commonly used as chatbots these are becoming easy to build and use. Companies providing virtual agents are Amazon, Apple, Microsoft, Google, IBM, and a few others.

Text Analytics helps machines to structure the sentences and find the precise meaning or intention of the user to improve the search results and develop machine learning.

NLP – Natural language processing helps applications to understand human language input, analyze large amounts of natural language data. It converts unstructured data to structured data for a speedy response to queries.

Emotion Recognition is AI technology that allows reading human emotions by focusing on the face, image, body language, voice, and feelings they express. It captures intention by observing hand gestures, vocabulary, voice tone, etc. E.g. Affectiva Emotion AI is used in industries such as gaming, education, automotive, robotics, healthcare industries, and other fields

Deep learning a machine learning technology that involves neural circuits to replicate the human brain for data processing and creating patterns for decision-making. Companies offering deep learning services are Deep Instinct, Fluid AI, MathWorks, etc.

Every sub-discipline of AI technology is worth exploring. Present-day applications are using these technologies to some extent and in the future, we will see outbursts and advance applications to benefit society and industries.

AI & ML innovations

1. Searches: AI technology has improved the way people search for information online, the text, image and speech search enabled with the recommendations from the search engines. Optimum search in minimum effort and time, faster response rate and relevant results along with the options to suit your requirements are what you can expect as a user. Better search optimizes web content, helps in lowering marketing and advertising expenses, increase in sales and productivity. Eg. Amazon Echo, Google Home, Apple’s Siri, and Microsoft’s Cortana deliver the best search experience. Google’s assistant receives voice instructions for about 70% of its searches.

2. Web Design: Companies know of the fact that how important it is to keep the websites working, creating a user-friendly website that is less expensive. Updating websites is another challenge. AI applications can empower you with pre-built designs of websites; assist you in creating one without any technical expertise, by uploading some basic content, images, etc. Select the buttons for call to action, themes, and formats to create a website that can interact with the user. Better user experience considers the location, demographics, interactions and the speed of analyzing the search and personalizing web experiences. Great web experience has a high probability of conversion. You may even add a chatbot to the website for faster query resolution and increased sales.

3. Banking and Payments: AI can automate transactions, help to schedule transactions and make general and utility payments. Personalized banking can let the banks focus on customer wise preferences and share product information of utmost relevance. Customers investing in the FDs, stocks, NFOs or even based on age to approach with specific marketing material. Loans and its procedures can be automated and the basic level information is shared using chatbots. Perform KYC checks necessary for continuing service from the banks. E.g. Simudyne is an AI-based platform for investment banking. Secure is AI and ML-based identity verification system for KYC.

4. E-Commerce: Retailers achieved a competitive edge using AI technology. It has recommendation systems based on location, age, gender, past purchases, stored preferences, (customer-centric search, etc. Tailor-made recommendations increase the chances of customers visiting the site and making a purchase or even return at a later stage to avail discounts. Chatbots are used for 24×7 customer support, image search lets users find the product faster without entering any text, better the decision making by comparisons and after-sales service. Companies benefit in inventory management, data security, customer relationship management and sales improvement using AI technology. IBM’s Watson assists customers with independent research about the factors relating to the product, its advantages, specifications, restrictions and multiple products that match the criterion.

5. Supply Chain and Logistics: This industry has benefited from the AI technology in improving operations, reducing shipping costs, easy tracking of vehicles, maintenance of vehicles, know about the condition in which the parcel was delivered, real-time reporting and feedback. It can help in quality checks for manufacturing, managing the supply chain vendors, keeping records of warehouse entries, forecasting the demand for products, reducing freights, planning and scheduling deliveries, etc. AI can automate many functions of supply chain and logistics for increased sales and better customer care.

6. Marketing and Sales: AI automation along with ML can give customers better options of products and prices, personalize the recommendations, eliminate geographical constrains, lower the cost of customer acquisition and maintaining touch with the existing customers. The intelligent algorithms predict what users want and what companies can provide to match the best possible. AI can even predict price trends, manage inventory, and help in decision making for stocking. Marketing activities can be channelized based on preferences and consumer behaviors. Services by companies like Phrasee and Persado can determine the perfect subject line for an e-mail, organize e-mail in a way that attracts the user to take desired actions. After-sales and customer care is an important aspect for companies expecting returning customers.

Overall it will increase the profitability of organizations and improve sales and marketing performance. AI can identify new opportunities for business and suggest an effective method too. Predictive analysis is of great help in customer service companies like Netflix and Spotify that run on subscriptions, would like to know if enough registrations are on the way for next month. Decide on additional schemes or marketing efforts are needed for increasing sales.

7. Digital Advertising: AI is supporting in marketing and sales, certainly it can assist in better focus for advertisements shown to the users. Google Adwords lets you focus on demographics, interests and other aspects of the audience. Facebook and Google ads are the platforms that use ML & AI for intelligent and accurate displays of relevant ads. Next is an audience management service that uses machine learning to automate the handling of ads for maximum response and it tests it on a variety of an audience to find the most active participation and likely conversions. The highest conversion rates received because of the increased performance of ads using ad text makes a business profitable.

Digital Advertising

Outline:

The continuous progress of Artificial Intelligence and emerging sub-disciplines will lead to customization and improvement in products and services. Human to Chatbot conversations are new but bot to bot conversations, actions, negotiations and much more awaited and is in the developing stage.

The existence of technology will add value to human life, create reliance and businesses will have new openings and challenges to deal with. Intelligent tools will deliver smart solutions and give rise to innovation to cut the competition.

Applications of Computer Vision in Healthcare

Computer vision is a field that explores ways to make computers identify useful information from images and videos. Think of it as training computers to see as humans do. While this technology has numerous applications in fields such as autonomous vehicles, retail supermarkets, and agriculture, let’s focus on the ways computer vision can benefit healthcare.

In the present scenario, doctors rely on their educated perception to treat patients. Since doctors are also prone to human error, computer vision can guide them through their diagnosis, and thus increase the treatment quality and the doctor’s focus on the patient. Further, patients can have access to the best healthcare services available, all through the swiftness and accuracy of computer vision. While still in its nascent stage, computer vision has already revealed ways in which it can improve multiple aspects of medicine. Here are a few notable ones:

Swift diagnosis:

Applications of Computer Vision

Many diseases can only be treated if they are diagnosed promptly. Computer vision can identify symptoms of life-threatening diseases early on, saving valuable time during the process of diagnosis. Its ability to recognize detailed patterns can allow doctors to take action swiftly, thus saving countless lives.

A British startup, Babylon Health, has been working to improve the speed of diagnosis using computer vision. To see this goal through, they have developed a chatbot which asks health-related questions to patients, whose responses are then, in turn, sent to a doctor. To pull out useful information from patients, the chatbot employs NLP algorithms.

In another example, scientists at the New York City-based Mount Sinai have developed an artificial intelligence capable of detecting acute neurological illnesses, such as hemorrhages or strokes. Also, the system is capable of detecting a problem from a CT scan in under 1.2 seconds — 150x faster than any human.

To train the deep neural network to detect neurological issues, 37,236 head CT scans were used. The institution has been using NVIDIA’s graphics processing units to improve the functioning and efficiency of their systems. 

Computer vision also allows doctors to spend less time analyzing patient data, and more time with the patients themselves, offering helpful and focused advice. This leads to improved efficiency of healthcare and can help in enabling doctors to treat more patients per year.

Health monitoring:

The human body goes through regular changes, but some of the issues it faces on the surface can, at times, represent symptoms of impending disease. These can often be overlooked through human error. With computer vision, there exists a quick way to access a variety of the patient’s health metrics. This information can help patients make faster health decisions and doctors make more well-informed diagnoses. Surgeries could also benefit from such technology.

For example, let’s consider the case of childbirth, based on the findings of the Orlando Health Winnie Palmer Hospital for Women and Babies. The institute has developed an artificial intelligence tool that employs computer vision to measure the amount of blood women lose during childbirth. Since its usage, they have observed that doctors often overestimate blood loss during delivery. As a result, computer vision allows them to treat women more effectively after childbirth.

There are also efforts such as AiCure, another New York-based startup that uses computer vision to track whether patients undergoing clinical trials are adhering to their prescribed medication using facial recognition technology. The goal behind this project is to reduce the number of people who drop out of clinical trials, aka attrition. This can lead to a better understanding of how medical care affects patients, and why.

Computer vision, paired with deep learning, can also be used to read two-dimensional scans and convert them into interactive 3D models. The models can then be viewed and analyzed by healthcare professionals to gain a more in-depth understanding of the patient’s health. Also, these models can provide more intuitive details than multiple stacked 2D images from a wide variety of angles.

Significant developments have taken place in dermatology. Computers are better than doctors at identifying potential health hazards in human skin. This allows for the early detection of skin diseases and personalized skincare options.

Further, no time is lost laboring over hand-written patient reports, since computer vision is capable of automatically drawing up accurate reports using all of the available patient data.

Precise diagnosis:

 The accuracy that computer vision provides eliminates the risk that comes with human judgment. These reliable systems can quickly detect minute irregularities that even skilled doctors could easily miss. 

When these kinds of symptoms are identified quickly, it saves patients the trouble of dealing with complicated procedures later on. Thus, it has the potential to minimize the need for complex surgical procedures and expensive medication.

One example of this would be computer vision’s use in radiology. Computer vision systems can help doctors take detailed X-rays and CT scans, with minimal opportunity for human error. These AI systems allow doctors to take advantage of the systems’ exposure to thousands of historical cases, which can be helpful in scenarios that doctors might not have come across before. The common uses of computer vision within radiology include detecting fractures and tumors.

Preemptive strategies

Computer Vision In Healthcare

Using machine learning, computer vision systems can sift through hundreds of thousands of images, learning with each scan how to better analyze and detect symptoms, possibly even before they present themselves.

This allows the medical professional to pre-emptively treat patients for symptoms of diseases they could develop in the future. Using input data from thousands of different sources, these AI systems can learn what leads to disease in the first place.

Present barriers

While computer vision is a revolutionary technology that will likely change healthcare as it is known today, there are some notable problems associated with the technology.

Firstly, interoperability. The computer vision AI from one region or hospital may not necessarily yield accurate or reliable results for patients outside of its sample data set. Of course, the machine learns with time, but overcoming this barrier could lead to faster adoption of this ground-breaking technology.

Also, there are privacy concerns around the digitization of patient medical data and its provision to artificial intelligence systems. This data vault needs to be stored in secure storage which can be easily accessed by the system, to avoid users with malicious intent.

And these systems aren’t perfect. Even the smallest margin of error cannot be tolerated in this space, because the consequences for wrong diagnoses are very real. These are human lives being dealt with, and the artificial intelligence systems aren’t responsible for providing treatment, only suggesting it. 

Also, there may be cases where the healthcare provider comes up with a diagnosis that conflicts with the computer vision system, leaving patients with a tough decision to make, and the doctors with all the responsibility.

Conclusion:

When computer vision is employed effectively in healthcare, it truly holds the potential to improve diagnoses and the standard of healthcare worldwide. This makes sense because doctors rely on images, scans, patient symptoms, and reports to make health-related decisions for their patients. The sheer abundance of use cases employed by computer vision systems make their analysis accurate. Thus, it allows doctors to make these crucial decisions with confidence.

Computer vision systems also allow for quality-of-life improvements, such as less time spent drafting reports, analyzing scans and procuring data. These systems could even be deployed remotely, enabling patients to receive professional medical attention from areas that don’t have easy access to healthcare services. All this lets doctors spend more time with patients, which is what healthcare should be about.

Technology Trends

As trends develop, it empowers considerably quicker change and progress, causing the increasing speed of the pace of progress, until, in the long run, it will wind up exponential.

Technology-based vocations don’t change at that equivalent speed; however, they do advance, and the smart IT expert perceives that their job won’t remain the equivalent.  Here are eight evolution patterns that have prominently developed in 2019.

trends in tech

Artificial Intelligence (AI)

Man-made brainpower, or AI, has just gotten a great deal of buzz as of late, however it keeps on being a pattern to watch since its impacts on how we live, work and play are just in the beginning periods. Moreover, different parts of AI have created, including Machine Learning, which we will go into beneath. Man-made intelligence alludes to PCs frameworks worked to imitate human insight and perform assignments, for example, acknowledgment of pictures, discourse or examples, and basic leadership.

Simulated intelligence has been around since 1956 is now generally utilized. Truth be told, five out of six people use AI benefits in some structure each day, including route applications, gushing administrations, cell phone individual associates, ride-sharing applications, home individual partners, and brilliant home gadgets. Notwithstanding buyer use, AI is utilized to timetable trains, survey business hazards, anticipate support, and improve vitality proficiency, among numerous other cash sparing undertakings.

Machine Learning

Machine learning is a subset of AI. With Machine Learning, PCs are customized to figure out how to accomplish something they are not modified to do: They truly learn by finding examples and bits of knowledge from information. All in all, we have two kinds of learning, managed and unaided.

While Machine Learning is a subset of AI, we additionally include subsets inside the space of Machine Learning, including neural systems, characteristic language handling (NLP), and profound learning

AI is quickly being conveyed in a wide range of ventures, making a gigantic interest for talented experts. The Machine Learning business sector is relied upon to develop to $8.81 billion by 2022. AI applications are utilized for information examination, information mining and example acknowledgment. On the buyer end, Machine Learning forces web indexed lists, constant advertisements, and system interruption identification, to give some examples of the numerous undertakings it can do.

Cyber Security

Cybersecurity probably won’t appear among developing innovation, given that it has been around for some time, yet it is advancing similarly as different advancements seem to be. That is to some extent since dangers are continually new. The pernicious programmers who are attempting to wrongfully get to information won’t surrender at any point shortly, and they will keep on discovering technologies to traverse even the hardest safety efforts. It’s likewise to a limited extent because innovation is being adjusted to upgrade security. Three of those headways are equipment confirmation, cloud innovation, and profound getting the hang of, as per one master.

Another includes information misfortune counteractive action and social investigation to the rundown. For whatever length of time that we have programmers, we will have cybersecurity as a rising innovation since it will always develop to safeguard against those programmers.

As verification of the solid requirement for cybersecurity experts, the quantity of cybersecurity employments is growing multiple times quicker than other tech occupations. Nonetheless, we’re missing the mark with regards to filling those occupations. Subsequently, it’s anticipated that we will have 3.5 million unfilled cybersecurity occupations by 2021.

Cyber Security

Chatbots

Chatbots are PC programs that copy composed or spoken human discourse for the motivations behind reproducing a discussion or collaboration with a genuine individual. Today, chatbots are generally utilized in the client care space for assuming jobs which are customarily performed by absolutely real people, for example, client care agents and consumer loyalty delegates. The utilization of chatbots is required to increment radically in 2019.

Blockchain

Albeit a great many people consider blockchain innovation in connection to cryptographic forms of money, for example, Bitcoin, blockchain offers security that is valuable from multiple points of view. In the least difficult of terms, blockchain can be portrayed as information you can just add to, not detract from or change. Not having the option to change the past squares is the thing that makes it so secure. Moreover, blockchains are agreement driven, as clarified in this Forbes article, so nobody substance can assume responsibility for the information.

This increased security is the reason blockchain is utilized for cryptographic money, and why it can assume a critical job in ensuring data, for example, individual restorative information. Blockchain could be utilized to radically improve the worldwide inventory network, as portrayed here, just as secure resources, for example, workmanship and land.

Virtual Reality and Augmented Reality

Computer-generated Reality (VR) drenches the client in a domain while Augment Reality (AR) improves their condition. Even though VR has essentially been utilized for gaming up to this point, it has likewise been utilized for preparing, similarly as with VirtualShip; a recreation programming used to prepare U.S. Naval force, Army and Coast Guard ship chiefs. The famous Pokemon Go is a case of AR.

Both have tremendous potential in preparing, diversion, instruction, promoting, and even recovery after damage. Either could be utilized to prepare specialists to do the medical procedures, offer historical center goers a more profound encounter, upgrade amusement leaves, or even improve advertising, similarly as with this Pepsi Max transport cover.

Edge Computing

Earlier an innovation pattern to watch, distributed computing has moved toward becoming standard, with significant players AWS (Amazon Web Services), Microsoft Azure and Google Cloud ruling the market. The selection of distributed computing is as yet developing, as an ever-increasing number of organizations relocate to a cloud arrangement. Be that as it may, it’s never again the rising innovation. Edge is. Move over, distributed computing, and clear a path for the edge.

As the amount of information, we’re managing keeps on expanding, we’ve understood the deficiencies of distributed computing in certain circumstances. Edge figuring is intended to help tackle a portion of those issues as an approach to sidestep the idleness brought about by distributed computing and getting information to a server farm for handling. It can exist “on the edge,” maybe, closer to where figuring needs to occur. Consequently, edge registering can be utilized to process time-touchy information in remote areas with constrained or no availability to a unified area. In those circumstances, edge registering can act like small datacenters.

Edge processing will increment as utilize the Internet of Things (IoT) gadgets increments. By 2022, the worldwide edge figuring business sector is required to reach $6.72 billion.

Internet of Things

Even though it seems like a game you’d play on your cell phone, the Internet of Things (IoT) is what’s to come. Many “things” are presently being worked with a WiFi network, which means they can be associated with the Internet—and to one another. Consequently, the Internet of Things, or IoT. IoT empowers gadgets, home apparatuses, vehicles and substantially more to be associated with and trade information over the Internet. What’s more, we’re just first and foremost phases of IoT: The quantity of IoT gadgets arrived at 8.4 billion out of 2017 is and expected to arrive at 30 billion gadgets by 2020.

As purchasers, we’re now utilizing and profiting by IoT. We can bolt our entryways remotely on the off chance that we neglect to when we leave for work and preheat our broilers on our route home from work, all while following our wellness on our Fitbits and hailing a ride with Lyft. Yet, organizations additionally have a lot to pick up now and sooner rather than later. The IoT can empower better wellbeing, effectiveness, and basic leadership for organizations as information is gathered and broke down.

It can empower prescient upkeep, accelerate therapeutic consideration, improve client assistance, and offer advantages we haven’t envisioned at this point. Nonetheless, in spite of this aid in the advancement and reception of IoT, specialists state insufficient IT experts are landing prepared for IoT positions. An article at ITProToday.com says we’ll require 200,000 more IT laborers that aren’t yet in the pipeline, and that a study of designers found 25.7 percent accept deficient ability levels to be the business’ greatest obstruction to development.

Even though advancements are developing and developing surrounding us, these eight spaces offer promising profession potential now and for a long time to come. And each of the eight are experiencing a deficiency of talented specialists, which means everything looks good for you to pick one, get prepared, and jump aboard at the beginning times of the innovation, situating you for progress now and later on.

Development tools for AI and ML

Artificial Intelligence a popular technology of computer science is also known as machine intelligence. Machine Learning is a systematic study of algorithms and statistical models.

AI creates intelligent machines that react like humans as it can interpret new data. ML enables computer systems to perform learning-based actions without explicit instructions.

AI global market is predicted to reach $169 billion by 2025. Artificial Intelligence will see increased investments for the implementation of advanced level software. Organizations will strategize technological advancements.

Various platforms and tools for AI and ML empower the developers to design powerful programs.

Tools for AI and ML

Tools for AI and ML:

Google ML Kit for Mobile:

Software development kit for Android and IOS phones enables developers to build robust applications with optimized and personalized features. This kit allows developers to ember the machine learning technologies with cloud-based APIs. This kit is integration with Google’s Firebase mobile development platform.

Features:

  1. On-device or Cloud APIs
  2. Face, text and landmark recognition
  3. Barcode scanning
  4. Image labeling
  5. Detect and track object
  6. Translation services
  7. Smart reply
  8. AutoML Vision Edge

Pros:

  1. AutoML Vision Edge allows developers to train the image labeling models for over 400 categories it capacities to identify.
  2. Smart Reply API suggests response text based on the whole conversation and facilitates quick reply.
  3. Translation API can convert text up to 59 languages and language identification API forms a string of text to identify and translate.
  4. Object detection and tracking API lets the users build a visual search.
  5. Barcode scanning API works without an internet connection. It can find the information hidden in the encoded data.
  6. Face detection API can identify the faces in images and match the facial expressions.
  7. Image labeling recognizes the objects, people, buildings, etc. in the images and with each matched data; ML shares the score as a label to show the confidence of the system.

Cons:

  1. Custom models can grow in huge sizes.
  2. Beta Release mode can hurt cloud-based APIs.
  3. Smart reply is useful for general discussions for short answers like “Yes”, “No”, “Maybe” etc.
  4. AutoML Vision Edge tool can function successfully if plenty of image data is available.

Accord.NET:

This Machine Learning framework is designed for building applications that require pattern recognition, computer vision, machine listening, and signal processing. It combines audio and image processing libraries written in C#. Statistical data processing is possible with Accord. Statistics. It can work efficiently for real-time face detection.

Features:

  1. Algorithms for Artificial Neural networks, Numerical linear algebra, Statistics, and numerical optimization
  2. Problem-solving procedures are available for image, audio and signal processing.
  3. Supports graph plotting & visualization libraries.
  4. Workflow Automation, data ingestion, speech recognition,

Pros:

  1. Accord.NET libraries are available from the source code and through the executable installer or NuGet package manager.
  2. With 35 hypothesis tests including two-way and one-way ANOVA tests, non-parametric tests useful for reasoning based on observations.
  3. It comprises 38 kernel functions e.g. Probabilistic Newton Method.
  4. It contains 40 non-parametric and parametric statistical distributions for the estimation of cost and workforce.
  5. Real-time face detection
  6. Swap learning algorithms and create or test new algorithms.

Cons:

  • Support is available for. Net and its supported languages.
  • Slows down because of heavy workload.

Tensor Flow:

It provides a library for dataflow programming. The JavaScript library helps in machine learning development and the APIs help in building new models and training the systems. Tensorflow developed by Google is an opensource Machine Learning library that aids in developing the ML models and numerical computation using dataflow graphs. Use it by installing, use script tags or through NPM.

Features:

  1. A flexible architecture allows users to deploy computation on one or multiple desktops, servers, or mobile devices using a single API.
  2. Runs on one or more GPUs and CPUs.
  3. It’s yielding scheme of tools, libraries, and resources allow researchers and developers to build and deploy machine-learning applications effortlessly.
  4. High-level APIs accedes to build and train for ML models efficiently.
  5. Runs existing models using TensorFlow.js, which acts as a model converter.
  6. Train and deploy the model on the cloud.
  7. Has a full-cycle deep learning system and helps in the neural network.

Pros:

  1. You can use it in two ways, i.e. by script tags or by installing through NPM.
  2. It can even help for human pose estimation.
  3. It includes the variety of pre-built models and model subblocks can be used together with simple python scripts.
  4. It is easy to structure and train your model depending on data and the models with you are training the system.
  5. Training other models for similar activities is simpler once you have trained a model.

Cons:

  1. The learning curve can be quite steep.
  2. It is often doubtful if your variables need to be tensors or can be just plain python types.
  3. It restricts you from altering algorithms.
  4. It cannot perform all computations on GPU intensive computations.
  5. The API is not that easy to use if you lack knowledge.

Infosys Nia:

This self-learning knowledge-based AI platform accumulates organizational data from people, business processes and legacy systems. It is designed to engage in complicated business tasks to forecast revenues and suggest profitable products the company can introduce.

Features:

  1. Data Analytics
  2. Business Knowledge Processing
  3. Transform Information
  4. Predictive Automation
  5. Robotic Process Automation
  6. Cognitive Automation

Pros:

  1. Organizational Transformation is possible with enhanced technologies to automate and increase operational efficiency.
  2. It enables organizations to continually use previously gained knowledge as they grow and even modify their systems.
  3. Faster data processing adds to the flexibility of data visualization, analytics, and intelligent decision-making.
  4. Reduces human efforts involved in solving high-value customer problems.
  5. It helps in discovering new business opportunities.

Cons:

  1. It is difficult to understand how it works.
  2. Extra efforts needed to make optimum use of this software.
  3. It has lesser features of Natural Language Processing.

Apache Mahout:

Mainly it aims towards implementing and executing algorithms of statistics and mathematics. It’s mainly based on Scala and supports Python. It is an open-source project of Apache.
Apache Mahout is a mathematically expressive Scala DSL (Domain Specific Language).

Features:

  1. It is a distributed linear algebra framework and includes matrix and vector libraries.
  2. Common maths operations are executed using Java libraries
  3. Build scalable algorithms with an extensible framework.
  4. Implementing machine-learning techniques using this tool includes algorithms for regression, clustering, classification, and recommendation.
  5. Run it on top of Apache Hadoop with the help of the MapReduce paradigm.

Pros:

  1. It is a simple and extensible programming environment and framework to build scalable algorithms.
  2. Best suited for large datasets processing.
  3. It eases the implementation of machine learning techniques.
  4. Run-on the top of Apache Hadoop using the MapReduce paradigm.
  5. It supports multiple backend systems.
  6. It includes matrix and vector libraries.
  7. Deploy large-scale learning algorithms using shortcodes.
  8. Provide fault tolerance if programming fails.

Cons:

  1. Needs better documentation to benefit users.
  2. Several algorithms are missing this limits the developers.
  3. No enterprise support makes it less attractive for users.
  4. At times it shows sporadic performance.

Shogun:

It provides various algorithms and data structures for unified machine learning methods. Shogun is a tool written in C++, for large-scale learning, machine learning libraries are useful in education and research.

Features:

  1. Huge capacity to process samples is the main feature for programs with heavy processing of data.
  2. It provides support to vector machines for regression, dimensionality reduction, clustering, and classification.
  3. It helps in implementing Hidden Markov models.
  4. Provides Linear Discriminant Analysis.
  5. Supports programming languages such as Python, Java, R, Ruby, Octave, Scala, and Lua.

Pros:

  1. It processes enormous data-sets extremely efficiently.
  2. Link to other tools for AI and ML and several libraries like LibSVM, LibLinear, etc.
  3. It provides interfaces for Python, Lua, Octave, Java, C#, C++, Ruby, MatLab, and R.
  4. Cost-effective implementation of all standard ML algorithms.
  5. Easily combine data presentations, algorithm classes, and general-purpose tools.

Cons:

Some may find its API difficult to use.

Scikit:

It is an open-source tool for data mining and data analysis, developed in Python programming language. Scikit-Learn’s important features include clustering, classification, regression, dimensionality reduction, model selection, and pre-processing.

Features:

  1. Consistent and easy to use API is also easily accessible.
  2. Switching models of different contexts are easy if you learn the primary use and syntax of Scikit-Learn for one kind of model.
  3. It helps in data mining and data analysis.
  4. It provides models and algorithms for support vector machines, random forests, gradient boosting, and k-means.
  5. It is built on NumPy, SciPy, and matplotlib.
  6. BSD license lets you use commercially.

Pros:

  1. Easily documentation is available.
  2. Call objects to change the parameters for any specific algorithm and no need to build the ML algorithms from scratch.
  3. Good speed while performing different benchmarks on model datasets.
  4. It easily integrates with other deep learning frameworks.

Cons:

  1. Documentation for some functions is slightly limited hence challenging for beginners.
  2. Not every implemented algorithm is present.
  3. It needs high computation power.
  4. Recent algorithms such as XGBoost, Catboost, and LightGBM are missing.
  5. Scikit learns models take a long time to train, and they require data in specific formats to process accurately.
  6. Customization for the machine learning models is complicated.
AI and ML development

Final Thoughts:

Twitter, Facebook, Amazon, Google, Microsoft, and many other medium and large enterprises continuously use improved development tactics. They extensively use tools for AI and ML technology in their applications.

Various tools for AI and ML can ease software development and make the solutions effective to meet customer requirements. Make user-friendly mobile applications or other software that are potentially unique. Using Artificial Intelligence and Machine Learning create intelligent solutions for improved human life. New algorithm creation, using computer vision and other technology and AI training requires skills and development of innovative solutions that need powerful tools.

Computer Vision Advances and Challenges

Computer vision refers to the field of training computers to visualize data as humans do. This technology has the potential to reach a stage wherein computers can understand images and videos better than humans. Also, the use cases are practically limitless, despite the technology still existing in its nascent stage of exploration. 

Computer Vision

Computer vision as a concept has been around since the 1950s. In its infancy, computers were trained to distinguish between shapes such as squares and triangles. Later on, training shifted towards distinguishing between typed and handwritten text.

Reasons for popularity

The main reason for computer vision’s popularity is its potential to revolutionize many every-day aspects of our lives. Computer vision drives autonomous vehicles and allows them to distinguish between traffic signal lights, medians, pedestrians, etc. It can also be used in healthcare, for detecting tumors in advance and identifying skin issues. 

There is a huge opportunity for employing computer vision in agriculture as well. It can be used to monitor the quality of crops, locate weeds and pests, based on which farmers can take action. 

Applications of Computer Vision

How about facial recognition? Yes, computer vision is already being used in new-generation smartphones to detect the user’s face. Even QR code scanning is an example of the adoption of computer vision. This technology can also be used in supermarkets to identify which users are making which purchases. 

Amazon is testing a convenience store called Amazon Go, which doesn’t have a billing counter. Instead, the store uses computer vision to identify customers and the items they add to their cart. A bill is sent to them online through the Amazon Go App once they leave the store with these items.

Advantages of computer vision

While computer vision has a lot more to achieve, it has already achieved ground-breaking innovations. That makes sense because this technology brings a lot of advantages to daily and professional life. 

Reliability

The human eye grows tired of scanning its environment. Factors such as fatigue and health come into the picture. With computer vision, this is eliminated because cameras and computers never get tired. Since the human factor is removed, it is easier to rely on the result. 

Numerous use cases 

From healthcare and agriculture to banking and automobiles, if explored smartly, computer vision can be employed in almost every aspect of our lives. These machines learn by viewing thousands of labeled images, thus understanding the traits of what’s being visualized. The same primary computer vision technology that evaluates the quality of packages in a factory can also be used to identify trends in the stock market.

Cost reduction

Computer vision can be used to increase productivity in operations and eliminate faulty products from hitting the shelves. This technology will also allow companies to manage their teams efficiently by identifying staff that could be used for other activities that require attention. For example, in Amazon fulfillment centers, productivity among workers is measured to improve efficiency and resource allocation.

Challenges faced by Computer Vision

Every emerging technology starts with a few significant drawbacks. From this technology’s development to its impact on society, there is a lot to look forward to, but a lot to be concerned about as well.

The challenge of making systems human-like

As much as computer vision is making huge leaps in its progress, it is difficult to simulate something as complex as the human visual system. The human brain-eye coordination is a marvel to behold, and its ability to understand its environment and make decisions is unparalleled by computer vision systems, at least at the moment.

Tasks such as object detection are complicated since objects of interest in images and videos may appear in a variety of sizes and aspect ratios. Also, a computer vision system will have to distinguish one object from multiple others within its view. This is a skill that computers are taking time to get better at.

Computer vision also hasn’t reached the stage wherein it can identify the difference between handwritten and typed text. This is due to the variety of handwriting styles, curves, and shapes employed while writing.

Privacy

This is arguably the biggest social threat that computer vision poses. The qualities that make computer vision effective are also the concerns of humans that value their privacy. With computers learning from thousands and thousands of images and videos, computers are getting better at recognizing individuals by their facial features, and everyone’s information is stored on a cloud.

Computer vision can track people’s whereabouts and monitor their habits. With such information, governments and businesses could be lured into penalizing and rewarding workers based on their actions. China, a nation with strong AI capabilities, is already looking to use computer vision to monitor its citizens and provide information that funds its controversial social credit system. On the other hand, San Fransisco has banned the use of facial recognition technology by the police and other related agencies.

It is psychologically unhealthy for humans to know that they are constantly being observed and monitored during every aspect of their lives. It would be interesting to see how governments intend to tackle this issue.

Final Thoughts

Computer vision’s progress can make people truly feel like they’re living through a sci-fi film. The future of this technology is filled with a range of use cases to be catered to. Numerous businesses within this realm are collecting millions of images and videos that can be used to train their computer vision systems. Also, existing businesses are exploring ways to employ computer vision into their operations. 

Challenges of Computer Vision

Computer vision has its present challenges, but the humans working on this technology are steadily improving it. Every emerging technology brings its fair share of advantages and disadvantages. While it is important to celebrate its progress, it is equally important to gauge its potential negative effect on society. This is the only way to ensure that computer vision makes our lives more comfortable and less constrained.

Jobs Artificial Intelligence

In the previous couple of years, computerized reasoning has progressed so rapidly that it presently appears to be not a month passes by without a newsworthy Artificial Intelligence (AI) achievement. In territories as wide-running as discourse interpretation, medicinal analysis, and interactivity, we have seen PCs beat people in frightening manners.

This has started an exchange about how AI will affect work. Some dread that as Artificial intelligence improves, it will replace laborers, making a consistently developing pool of unemployable people who can’t contend monetarily with machines.
This worry, while reasonable, is unwarranted. Truth be told, AI will be the best employment motor the world has ever observed.

2020 will be a significant year in AI-related work elements, as indicated by Gartner, as AI will turn into a positive employment helper. The number of occupations influenced by Artificial Intelligence will shift by industry; through 2019, social insurance, the open division, and instruction will see constantly developing employment requests while assembling will be hit the hardest. Beginning in 2020, AI-related occupation creation will a cross into positive area, arriving at 2,000,000 net-new openings in 2025, Gartner said in a discharge.

Numerous huge advancements in the past have been related to change the time of impermanent occupation misfortune, trailed by recuperation, at that point business change and AI will probably pursue this course.

Jobs by Artificial Intelligence (AI) and ML

JOBS CREATED BY AI AND MACHINE LEARNING

A similar idea applies to AI. It is an instrument that individuals need to figure out how to utilize and how to apply to what’s going on with as of now. New openings are now being made that are centered around applying AI to security, improving basic AI methods, and on keeping up these new apparatuses.

Plenty of new openings will develop for those with mastery in applying center Artificial Intelligence innovation to new fields and applications. Specialists will be expected to decide the best sort of AI (for example master frameworks or AI), to use for a specific application, create and train the models, and keep up and re-train the frameworks as required. In fields, for example, security, where sellers have enabled security programming with AI, it’s up to clients – the security investigators – to comprehend the new capacities and put them to be the most ideal use.

Training is another field where AI and machine learning is making new openings. As of now, over the US, the main two situations in the rundown of scholastic openings are for Security and Machine Learning specialists. Colleges need more individuals and can’t discover educators to show these fundamentally significant subjects.

FUTURE JOBS PROSPECTS BECAUSE OF AI AND MACHINE LEARNING

In a few businesses, AI will reshape the sorts of employments that are accessible. What’s more, much of the time, these new openings will be more captivating than the monotonous errands of the past. In assembling, laborers who had recently been attached to the generation line, looking for blemished items throughout the day, can be redeployed in increasingly profitable interests — like improving procedures by following up on bits of knowledge gathered from AI-based sensor and vision stages.

These are increasingly specific errands and retraining or uptraining might be important for laborers to successfully satisfy these new jobs — something the two organizations and people should address sooner than later.

Man-made intelligence-based arrangements in any industry produce monstrous measures of information, frequently from heterogeneous sources. Successfully saddling the intensity of this information requires human abilities. Profound learning researchers have come to comprehend that setting is basic for preparing powerful AI models — and people are important to clarify this information to give set in uncertain circumstances and help spread all this present reality varieties an AI framework will experience.

Keeping that in mind, Appen utilizes more than 40,000 remote contractual workers a month to perform information explanation for our customers, drawing from a pool of more than 1 million talented annotators around the world.

These occupations wouldn’t exist without the profound learning innovation that makes AI conceivable. As researchers and designers make immense advances in innovation, organizations and laborers may need to adopt new mechanical aptitudes to remain aggressive.

Simulated intelligence is helping drive work creation in cybersecurity

As the worldwide economy is progressively digitized and mechanized, effectively unavoidable criminal ventures – programmers, malware, and different dangers – will develop exponentially, requiring engineers, analyzers, and security specialists to alleviate dangers to crucial open framework and meet expanding singular personality concerns.

In the previous couple of years there has been an enormous increment in cybersecurity work postings, a large number of which stay unfilled. With this deficiency of cybersecurity experts, most security groups have less time to proactively protect against progressively complex dangers. This interest has made a significant specialty for laborers to fill.

The stream down impact of industry-wide digitalization

In a roundabout way, the efficiencies and openings that profound learning and computerization empower for organizations can make a great many employments. While mechanized conveyance strategies, for example, self-driving conveyance trucks will take a great many drivers off the street, an ongoing Strategy + Business article proposes that, “In reality as we know it where organizations are progressively made a decision on the nature of the client experience they give, you will require representatives who can consolidate the aptitudes of a client care specialist, advertiser, and sales rep to sit in those trucks and connect with clients as they make conveyances.”

Additionally, the higher profitability and positive development empowered by AI will positively affect employing as organizations will just need to procure more laborers to take on existing assignments that require human abilities. Consider client support, publicists, program administrators, and different jobs that require abilities, for example, compassion, moral judgment, and inventiveness.

Growing new aptitudes to endure and flourish

It’s anything but difficult to perceive any reason why laborers and administrators the same may be hesitant to execute AI-controlled mechanization. Be that as it may, as their rivals receive this innovation and start to outpace them in deals, creation, and development, it will expect them to adjust. The two organizations and laborers should put resources into developing new innovative aptitudes to enable them to remain significant in this information-driven scene. If they can do this, the open doors for business and expert development are perpetual.

Development in AI and ML jobs

DEVELOPMENT IN THE FIELD OF AI and ML

Man-made reasoning is a method for making a PC, a PC controlled robot, or a product think keenly, in the comparative way the insightful people think.
Man-made brainpower is a science and innovation dependent on orders, for example, Computer Science, Biology, Psychology, Linguistics, Mathematics, and Engineering. A significant push of Artificial Intelligence (AI) is in the advancement of PC capacities related to human knowledge, for example, thinking, learning, and critical thinking.

AI is a man-made consciousness-based method for creating PC frameworks that learn and advance dependent on experience. Some basic AI applications incorporate working self-driving autos, overseeing speculation reserves, performing legitimate disclosure, making therapeutic analyses, and assessing inventive work. A few machines are in any event, being educated to mess around.

Man-made intelligence and MACHINE LEARNING isn’t the eventual fate of innovation — it’s nowhere. Simply see how voice aides like Google’s Home and Amazon’s Alexa have turned out to be increasingly more unmistakable in our lives. This will just proceed as they adapt more aptitudes and organizations work out their associated gadget biological systems. The accompanying can be viewed as a portion of the significant advancements in the field of AI.

Artificial intelligence in Banking and Payments

This report features which applications in banking and installments are most developed for AI. It offers models where monetary organizations (FIs) and installments firms are as of now utilizing the innovation, talks about how they should approach actualizing it, and gives depictions of merchants of various AI-based arrangements that they might need to think about utilizing.

Computer-based intelligence in E-Commerce

This report diagrams the various uses of AI in retail and gives contextual analyses of how retailers are increasing a focused edge utilizing this innovation. Applications incorporate customizing on the web interfaces, fitting item suggestions, expanding the hunt significance, and giving better client support.

Computer-based intelligence in Supply Chain and Logistics

This report subtleties the variables driving AI appropriation in-store network and coordinations, and looks at how this innovation can decrease expenses and sending times for activities. It likewise clarifies the numerous difficulties organizations face actualizing these sorts of arrangements in their store network and coordinations tasks to receive the rewards of this transformational innovation.

Artificial intelligence in Marketing

This report talks about the top use cases for AI in advertising and looks at those with the best potential in the following couple of years. It stalls how promoting will develop as AI robotizes medicinal undertakings, and investigates how client experience is winding up increasingly customized, pertinent, and auspicious with AI.

CONCLUSION

To close, AI introduces a colossal open door for venturesome individuals. Representatives have the chance to jump into another field and conceptual their business to another, more significant level of investigation and vital worth. Businesses need to help these moves and for the most part remain open to representatives rethinking themselves as they hold onto innovations, for example, AI.

Virtual Assistants - Alexa, Siri, Google Assistant

Siri was introduced as a feature of the iPhone 4S in 2010. While it could only answer simple questions such as “What’s today’s weather like?” and “Who is Barack Obama?”, users praised the potential of the new voice assistant. Quite a feat for that time for a virtual assistant.

Expectations were high, and Siri fell short. Users complained about inaccurate responses to simple questions or commands. If Siri didn’t know the answer to a question, she’d crack a bad joke, which can seem like an unacceptable excuse for not having the ability to answer a question.

While Apple made improvements to its voice assistant, it wasn’t able to meet a lot of high expectations, and that frustrated users.

Alexa

Three years later, Amazon introduced its own voice assistant named Alexa, and it was instantly pitted against Apple’s alternative. Users observed that Alexa was quicker with responses, and was answering more questions right than wrong. Alexa fell short next to Siri when it comes to the fluidity and flow of requests and conversations. Siri could respond to commands better, and it had no problems understanding multiple sentence structures that conveyed the same message.

In 2016, Google came out with an answer to Siri and Alexa in the form of Google Assistant. It became the gold standard for how natural language processing (NLP) should be implemented with a voice assistant. The drawback of Google Home was that it didn’t have the broad integrations that Alexa had with Amazon’s devices.

These three voice assistants are the most popular in the market and each of them has their own strengths and weakness. But, how exactly do they stand against each other? 

The main tests we will conduct for these voice assistants are commands, conversation flow, music requests, home automation, and technology. MKBHD and Undecided with Matt Farell have given us interesting demonstrations and questions that can be used to test each of these three voice assistants. Let’s compare them using the following parameters:

Commands

Voice assistants started off as devices that could answer simple questions such as the time and the weather. Accuracy of response is key here and speed is an additional bonus.

What’s the weather?

Siri, Alexa, and Google Home have no problem answering this. Google tends to have a slight delay in its response generally, but nothing that could test a user’s patience.

How far away is London?

Siri and Google answered this right in miles as the crow flies, while Alexa provided an inaccurate response, or the answer to a different London (there are 29 places in the world called London). 

Conversation Flow 

When humans have conversations, the talking points build naturally and flow from one topic to another seamlessly. For a voice assistant, understanding context while having a conversation is key. 

Conversation

The following questions were asked one after the other to each voice assistant separately.

Who is the 45th President of the United States?

All three voice assistants provide the right answer. Siri cites the source and asks users if they’d like more information.

Where is he from?

When asked immediately after the previous question, Siri and Google fail. Alexa seems to handle context better than its two competitors.

Music

Since all voice assistants communicate with speakers, they need to understand song, artist and album requests. But before we get into their ability to play a track on-demand, its important to note that each voice assistant only plays music from a select set of streaming services. Alexa wins here as it plays from most major services. Google works only with Google Play Music, YouTube Music, Spotify, and Deezer. And Siri, not surprisingly, only plays from Apple Music.

Play Get Lucky by Daft Punk

Simple task. No losers here.

Play the song that goes “like the legend of the phoenix”

Alexa fails here while Siri and Google Assistant get it right.

Home Automation

Home automation refers to command-based control over home appliances such as fans, den lights, television, heaters, etc. Here’s how the voice assistants fared with the following two questions.

Turn off the den lights

All assistants successfully turned the lights off. 

Set the room temperature to 70 F

Google Assistant and Siri got this right, while Alexa adjusted the room temperature to a value between 65 and 70. 

Technology

Siri primarily works on Natural Language Processing (NLP) integrated with Machine Learning (ML), and voice recognition. Alexa operates on similar tech such as Automated Speech Recognition (ASR), and Natural Language Understanding (NLU). The technology isn’t too different from google either, its voice assistant employs NLP and ML.

Yes, the three voice assistants use ML and NLP to understand what the user is saying and to make suggestions or respond to the user’s language input. While the primary technology is the same or at least similar, the end result is what separates the three. As observed in the tasks assigned to them earlier, certain aspects of each voice assistant’s tech, such as the ability to understand speech patterns and words,  give them an advantage and a disadvantage.

Conclusion

The aim isn’t to be diplomatic, but there isn’t exactly a winner among the three. All the voice assistants can, for the most part, do the same things. Alexa has the largest home-integration options among the three, while Google Assistant and Siri are a lot more natural to talk to. 

Virtual Assistants

If you’re big on home automation and having wide music streaming options, Alexa is the voice assistant for you.

If you find yourself comfortable with Google’s streaming services such as Google Music and Youtube, Google Assistant is a smart pick. It also comes with a formidable range of home automation.

And finally, if your household is equipped with Apple’s products, it’s a no brainer to pick Siri, who’s device also has the best speakers among the three. Siri also has an advantage concerning privacy, as it encrypts all data, unlike its competitors that use it for targetted ad campaigns.

As a consumer, your goal is to see which one of these fits your requirement and aligns with what you’re looking for from a voice assistant.

Machine Learning

What is Machine Learning?

Machine learning (ML) is fundamentally a subset of artificial intelligence (AI) that allows the machine to learn automatically. No explicit programs are needed instead of coding you gather data and feed it to the generic algorithm. It is a scientific study of algorithms and statistical models used by computers to perform specific tasks.

The machine builds a logic based on that data. It can access data and teach itself from various instructions, interactions, and queries resolved. ML forms data patterns that help in making better decisions. The machines learn without human interference even in fields where developing a conventional algorithm is not workable. ML includes data mining, data analysis to perform predictive analytics.

Machine learning facilitates the analysis of substantial quantities of data. It can identify profitable opportunities, risks, returns and much more at a very high speed and accuracy. Costs and resources are involved in training the agent to process large volumes of information gathered.

Working of Machine Learning:

Machine Learning algorithm obtains skill by using the training data and develops the ability to work on various tasks. It uses data for accurate predictions. If the results are not satisfactory, we can request it to produce other alternative suggestions. ML can have supervised, semi-supervised, unsupervised or reinforcement learning.

Supervised learning is the machine is trained by the dataset to predict and take decisions. The machine applies this logic to the new data automatically once learned. The system can even suggest new input after adequate training and can even compare the actual output with the intended output. This model learns through observations, corrects the errors by altering the algorithm. The model itself finds the patterns and relationships in the dataset to label the data. It finds structures in the data to form a cluster based on its patterns and uses to increase predictability.

Semi-supervised learning uses labeled and unlabelled data for the training purpose. This is partly supervised machine learning, and it considers labeled data in small quantities and unlabelled data in large quantities. The systems can improve the learning accuracy using this method. If the companies have acquired and labeled data; have skilled and relevant resources in order to train it or learn from it they choose semi-supervised learning.

Unsupervised machine learning algorithms are useful when the information used to train is not classified or labeled. Studies that include unsupervised learning prove how systems can conclude a function to depict a hidden structure from the unlabelled data. The system explores data supposition to describe the obscure structures from the unlabelled data.

Reinforcement machine learning, these algorithms can interact with its environment by generating actions. It can find the best outcome from some trial and errors and the agent earns reward or penalty points to maximize its performance. The model trains itself to predict the new data presented. The reinforcement signal is a must for the agent to find out the best action from the ones its suggestions.

Future of ML

Evolution of Machine Learning:

Machine learning has evolved over a period and experiences continuous growth. It developed the pattern recognition and non-programmed automated learning of computers to perform simple and complex tasks. Initially, the researchers were curious about whether computers can learn with the least human intervention just with the help of data. The machines learn from the previous methods of computations, statistical analysis and can repeat the process for other datasets. It can recommend the users for the product and services, respond to FAQs, notify for subjects of your choice, and even detect fraud.

Machine Learning as of today:

Machine Learning has gained popularity for its data processing and self-learning capacity. It is involved in technological advancements and its contribution to human life is noteworthy. E.g. Self-driving vehicles, robots, chatbots in the service industry and innovative solutions in many fields.

Currently, ML is widely used in :

1. Image Recognition: ML algorithms detect and recognize objects, human faces, locations and help in image search. Facial recognition is widely used in mobile applications such as time punching apps, photo editing apps, chats, and other apps where user authentication is mandatory.

2. Image Processing: Machine learning conducts an autonomous vision useful to improve imaging and computer vision systems. It can compress images and these formats can save storage space, transmit faster. It maintains the quality of images and videos.

3. Data Insights: The automation, digitization, and various AI tools used by the systems provide insights based on an organization’s data. These insights can be standard or customized as per the business need.

4. Market Price: ML helps retailers to collect information about the product, its features, its price, promotions applied, and other important comparatives from various sources, in real-time. Machines convert the information to a usable format, tested with internal and external data sources, and the summary is displayed on the user dashboard. The comparisons and recommendations help in making accurate and beneficial decisions for the business.

5. User Personalisation: It is one of the customer retention tactic used in all the sectors. Customer expectations and company offerings have a commercial aspect attached; hence, personalization is introduced on a wide variety of forms. ML processes massive data of customers such as their internet search, personal information, social media interactions, and preferences stored by the users. It helps companies increase the probability of conversion and profitability with reduced efforts with ML technology. It can help branding, marketing, business growth and improve performance.

6. Healthcare Industry: Machine learning assists to improve healthcare service quality; reduce costs, and increase satisfaction. ML can assist medical professionals by searching the relevant data facts and suggest the latest treatments available for such illnesses. It can suggest the precautionary measures to the patient for better healthcare. AI can maintain patient data and use it as a reference for critical cases in hospitals across the globe. The machines can analyze images of MRI or CT Scan, process clinical procedures videos, check laboratory results, sort patient information and use efficiently. ML algorithms can even identify skin cancer and cancerous tumors by studying mammograms.

7. Wearables: These wearables are changing patient care, with strong monitoring of health as a precaution or prevention of illness. They track the heart rate, pulse rate, oxygen consumption by the muscles and blood sugar level in real-time. It can reduce the chances of heart attack or injury, and can recommend the user for medicine dose, health check-up, type of treatment, and help the faster recovery of the patient. With an enormous amount of data that gets generated in healthcare, the reliance on machine learning is unavoidable.

8. Advanced cybersecurity: Security of data, logins, and personal information, bank and payment details is necessary. The estimated losses that organizations face because of cybercrime are likely to reach $6 trillion yearly. Threat is raising the cybersecurity costs and increasing the burden on the operational expenses of organizations. The ML implementation protects user data, their credentials, saves from phishing attacks and maintains privacy.

9. Content Management: The users can see sensible content on their social media platforms. The companies can draw the attention of the target audience and it reduces their marketing and advertising costs. Based on human interactions these machines can show relevant content.

10. Smart Homes: ML does all mundane tasks for you, maintaining the monthly grocery, cleaning material, and regular purchase lists. It can update the list when there are input and order material on the scheduled date. It increases the security at home by keeping the track of known visitors and barring the other from entering the premise or specifies suspicious activities.

11. Logistics: Machine learning can keep track of the user’s choices for delivery and can suggest based on the instructions and addresses they use often. The confirmations, notifications, and feedback about the delivery is processed by the machines more efficiently and in real-time.

Future of ML:

Do not be surprised if we are found learning dance, music, martial arts, and academic subjects from the Bots. We will shortly experience improved services in travel, healthcare, cybersecurity, and many other industries as the algorithms can run throughout with no break, unlike humans. They not only deal but respond and collect feedback in real-time.

Researchers are developing innovative ways of implementing machine-learning models to detect fraud, defend cyberattacks. The future of transportation is great with the wide-scale adoption of autonomous vehicles.

The voice, sound, image, and face recognition, NLP is creating a better understanding of customer requirements and can serve better through machine learning.

Autonomous Vehicles like self-driving cars can reduce traffic-related problems like accidents and keep the driver safe in case of a mishap. ML is developing powerful technologies to let us operate these autonomous vehicles with ease and confidence. The sensors use the data points to form algorithms that can lead to safe driving.

Deeper personalization is possible with ML as it highlights the possibilities of improvement. The advertisements will be of user choice as more data is available from the collective response of each user for the text or video they see.

The future will simplify the machine learning by extracting data from the devices directly instead of asking the user to fill the choices. The vision processing lets the machine view and understands the images in order to take action.

You can now expect cost-effective and ingenious solutions that will alter your choices and change your set of expectations from the companies and products.

According to the survey by Univa 96% of companies think there will be outbursts in Machine Learning projects by 2020. Two out of ten companies have ML projects running in production. 93% of companies, which participated in the survey, have commenced ML projects. (344 Technology and IT professionals were part of the survey)

Approximately 64% of technology companies, 52% of the finance sector, 43% of healthcare, 31% of retail, telecommunications, and manufacturing companies are using ML and overall 16 industries are already using machine-learning processes.

Final Thoughts:

Machine Learning is building a new future that brings stability to the business and eases human life. Sales data analysis, streamlining data, mobile marketing, dynamic pricing, and personalization, fraud detection, and much more than the technology has already introduced, we will see new heights of technology.

Artificial Intelligence Applications

Artificial Intelligence is here to change the way humans interact with their world, and it’s poised to make life easier. Today, numerous applications of Artificial Intelligence for business solutions exist. From voice assistants playing music at our behest to phones unlocking themselves by viewing our faces, AI has shown us that the future is here.

AI is also here to make life simpler for employees and businesses. A lot of business processes are waiting to be automated, and data analytics is offering more insights than ever for decision making and identifying opportunities. AI can manage a company’s workflow and predict trends. 

There are a variety of applications for AI in business. Let’s do a rundown of the eight most popular ones:

Serve your customers better

Every business needs to keep its customers happy and satisfied. They also need to know how to empathize and deal with unhappy ones. A strong customer base is integral to a business’s success, and AI is making it easier to achieve this. 

Applications of Artificial Intelligence for business

Businesses can use conversational AI to provide a personalized platform for customer interaction. Customers love immediate responses, and research exists to back this up. Econsultancy reports that 79% of customers prefer to chat with a customer support rep to solve issues and queries.

Businesses can employ chatbots to make sure customers always have someone to go to instantly if and when there’s a problem. Chatbots can handle simple queries and lead customers to a human support representative if the issue is complex. 

Predict online behavior

Understanding online customer behavior is essential to e-commerce. Factors such as product clicks, bounce rate, purchases, etc. determine the success or failure of products sold by online businesses.

Applications of Artificial Intelligence for business

Data analytics allows online businesses to study the data that they’ve captured. It’s a great way to understand which products are helping the business and also the ones that need to be discontinued. New products can also be launched if certain product categories are proving to be popular.

Machine Learning algorithms can track user behavior on websites. With the information collected, businesses can personalize a customer’s experience. Customers could be shown products that they are likely to buy. 

Optimize workflow

Manufacturing businesses can make use of computer vision to monitor factory operations. Such technology can measure employee productivity and the efficiency of processes. Industrial robots can replace repetitive tasks or tasks that eliminate possible human error.

Improve physical checkouts

With the help of computer vision, retail stores can save customers a lot of time while checking out. Computer vision cameras across store premises can identify customers and the items they pic. Once customers are done picking what they require, the retailer can send an invoice online, thus avoiding any reasons to wait in a long queue.

Strengthen your cybersecurity efforts

 Every business has data that needs to be protected. They generally store this data on common/public infrastructure, which makes the data more prone to cybersecurity attacks. 

Applications of Artificial Intelligence for business

Businesses can employ AI/ML to strengthen their cybersecurity efforts. They can use ML to detect malicious activities in data storage systems and improve human analysis, from detecting attacks of a malicious nature to endpoint protection. Also, businesses can automate mundane tasks, thus allowing less room for human error due to fatigue, and more accurate results.

Market yourself with data

With the help of AI and ML, advertising campaigns can be planned with less subjectivity and more data-backed decision making. AI models that can analyze the most successful advertisement campaigns of the past are available in the market (IBM Watson, for example). These models can study advertisement parameters such as audiences, click rate, transaction rate, overall spend, etc. 

Applications of Artificial Intelligence for business

AI can also identify and segment audiences that are most likely to respond to a certain ad positively. By understanding their audiences, ads creatives, while subjective in nature, can be provided with an objective touch, to increase conversions.

Today, most brands use AI to prepare their ad campaigns. Using data, ads of the future can learn from the past to hack the future in their favor.

Detect fraud and anomalies

The banking industry is a sensitive one since issues in this field affect customers more than any other industry. Now that we’ve got Big Data, banks and financial firms can now access data on customer spending habits. So, if bank officials observe any anomalies in any transaction from a customer’s bank account, they can alert customers.

AI-inspired fraud detection applications review a customer’s social media, employment statistics, high school & college education, etc. to determine whether their expenditures and financial activities are in sync. Businesses can continuously update such applications as customer data change, thus more accurately determining what accounts for financial fraud.

Predict outages

To execute any strategy successfully, the resources that aid the execution process need to be abundant. Outages can slow down industry processes and hamstring operations. 

AI can monitor teams and their inventory to determine whether a plan will be executed on time or not. Teams can be alerted if new additions need to be made to their inventory and if any resources aren’t being used effectively.

Applications of Artificial Intelligence for business - outages

For example, in a factory setup, monitoring storage locations allows businesses to identify missing items and raw materials that need to be replaced or replenished. These raw materials are crucial to the final product’s creation, and AI can ensure that any possible hurdles are taken care of.

Conclusion

Despite AI being in its nascent stage, it has already proven to be a technological juggernaut. In business, AI can improve manufacturing processes, reduce financial fraud, and improve marketing campaigns, among many other applications as discussed above. 

With extraordinary leaps made in machine learning and computer vision, it will be interesting and exciting to see AI developers discover new applications. We will definitely update this piece once further applications of Artificial Intelligence for business present themselves.

Understanding What Is Conversational AI

For the last couple of hundred years, the total of what correspondence has been verbal, composed, or visual. We talked with our mouths, hands, and utilizing different mediums like braille or a PC. Discussions, specifically, required two distinct things.

Various people and an approach to impart. Things have since taken a noteworthy improvement. We have now opened better approaches to discuss legitimately with our innovation in a conversational setting utilizing a conversational chatbot.

Conversational AI alludes to the utilization of informing applications, discourse-based collaborators and chatbots to computerize correspondence and make customized client encounters at scale. Countless individuals use Facebook Messenger, Kik, WhatsApp and other informing stages to speak with their loved ones consistently. Millions more are exploring different avenues regarding discourse-based colleagues like Amazon Alexa and Google Home.

Applications of Conversational AI

Accordingly, informing and discourse-based stages are quickly uprooting conventional web and portable applications to turn into the new vehicle for intuitive discussions. At the point when joined with robotization and man-made reasoning (AI), these associations can interface people and machines through menial helpers and chatbots.

However, the genuine intensity of conversational AI lies in its capacity to all the while complete exceptionally customized connections with huge quantities of individual clients. Conversational AI can on a very basic level change an association, furnishing more methods for speaking with clients while encouraging more grounded communications and more noteworthy commitment.

Human-made consciousness is a term we’ve started to turn out to be exceptionally acquainted with. When covered inside your most-loved science fiction motion picture, AI is currently a genuine, living, powerhouse of its own.

Conversational AI is in charge of the rationale behind the bots you manufacture. It’s the cerebrum and soul of the chatbot. It’s what enables the bot to carry your clients to a particular objective. Without conversational AI, your bot is only a lot of inquiries and answers.

Conversational AI

Few Examples Of Conversational AI

Facebook Messenger

Facebook has bounced completely on the conversational trade temporary fad and is wagering enormous that it can transform its mainstream Messenger application into a business informing powerhouse.

The organization originally incorporated shared installments into Messenger in 2015, and after that propelled a full chatbot API so organizations can make cooperations for clients to happen inside the Facebook Messenger application. You can request blooms from 1–800-Flowers, peruse the most stylish trend and make buys from Spring, and request an Uber, all from inside a Messenger talk.

Operator

Administrator considers itself a “demand organize” expecting to “open the 90% of business that is not on the web.” The Operator application, created by Uber fellow benefactor Garrett Camp, interfaces you with a system of “administrators” who act like attendants who can execute any shopping-related solicitation.

You can request show passes, get blessing thoughts, or even get inside plan proposals for new furnishings. Administrator is by all accounts situating itself towards “high thought” buys, greater ticket buys requiring more research and skill, where its administrators can increase the value of an exchange.

Administrator’s specialists are a blend of Operator workers, in-store reps, and brand reps. The organization is additionally creating man-made consciousness to help the course ask for. Almost certainly the administration will wind up more astute after some time, joining AI for productivity and human mastery for quality suggestions.

Amazon Echo

Amazon’s Echo gadget has been an unexpected hit, coming to over 3M units sold in under a year and a half. Albeit some portion of this achievement can be ascribed to the gigantic mindfulness building intensity of the Amazon.com landing page, the gadget gets positive surveys from clients and specialists the same and has even incited Google to build up its own adaptation of a similar gadget, Google Home.

What does the Echo have to do with conversational business? While the most widely recognized utilization of the gadget incorporates playing music, making educational inquiries, and controlling home gadgets, Alexa (the gadget’s default addressable name) can likewise take advantage of Amazon’s full item inventory just as your request history and brilliantly complete directions to purchase stuff. You can re-request normally requested things, or even have Alexa walk you through certain alternatives in buying something you’ve never requested.

Snapchat Discover + Snapcash

Brands are falling over themselves to connect to Snapchat, and the ultra-well known informing application among youngsters and Millennials has as of late been offering some enticing sign that it will end up being a considerably all the more convincing internet business stage sooner rather than later.

In 2015, Snapchat propelled Snapcash, a virtual wallet which enables clients to store their charge card on Snapchat and send cash between companions with a basic message.

While this was a restricted test, it demonstrates that Snapchat sees potential in empowering direct trade (likely satisfied through Snapcash installments) inside the Snapchat application, opening the entryway to many fascinating better approaches to brands to interface and offer items to Snapchatters.

AppleTV and Siri

With a year ago’s invigorate of AppleTV, Apple brought its Siri voice partner to the focal point of the UI. You would now be able to ask Siri to play your preferred TV appears, check the climate, look for and purchase explicit kinds of motion pictures, and an assortment of other explicit errands.

Albeit a long ways behind Amazon’s Echo as far as expansiveness of usefulness, Apple will no uncertainty grow Siri’s joining into AppleTV, and its reasonable that the organization will present another adaptation of AppleTV that all the more legitimately contends with the Echo, maybe with a voice remote control that is continually tuning in for directions.

Businesses and conversational AI

Organizations can utilize Conversational AI to robotize clients confronting touchpoints all over – via web-based networking media stages like Facebook and Twitter, on their site, their application or even on voice aides like Google Home. Conversational AI frameworks offer an increasingly clear and direct pipeline for clients sort issues out, address concerns and arrive at objectives.

Both the terms ‘Chatbot‘ and ‘Conversational AI’ have a similar significance.

How It Works To Engage Customers

1) It’s convenient, all day, every day

The greatest advantage of having a conversational AI arrangement is the moment reaction rate. Noting inquiries inside an hour means 7X greater probability of changing over a lead. Clients are bound to discuss a negative encounter than a positive one. So stopping a negative survey directly from developing in any way is going to help improve your item’s image standing.

2) Customers incline toward informing

The market shapes client conduct. Gartner anticipated that ‘40% of versatile collaborations will be overseen by shrewd specialists by 2020. ’ Every single business out there today either has a chatbot as of now or is thinking about one. 30% of clients hope to see a live visit alternative on your site. 3 out of 10 shoppers would surrender telephone calls to utilize informing. As an ever-increasing number of clients start anticipating that your organization should have an immediate method to get in touch with you, it bodes well to have a touchpoint on a detachment.

3) It’s connecting with and conversational

We’ve just lauded the advantages of having a direct hotline for clients to contact you. Be that as it may, the conversational angle is the thing that separates this strategy from some other.

Chatbots make for incredible commitment devices. Commitment drives tenacity, which drives retention — and that, thus, drives development.

4) Scalability: Infinite

Chatbots can quickly and effectively handle an enormous volume of client questions without requiring any expansion in group size. This is particularly helpful on the off chance that you expect or abruptly observe a huge spike in client questions. A spike like this is a catastrophe waiting to happen in case you’re totally subject to a little group of human operators.

How Businesses Can Use Conversational AI

Your business is speaking with a client for the duration of the time they’re utilizing your item. As far as we can tell conveying conversational AI answers for undertakings, we’ve seen that some utilization cases can use such innovation superior to other people.

Our rundown of the best performing use cases is underneath:

  • Ushering a client in (Lead Generation): Haptik’s Lead Bots have seen 10Xbetter change rates contrasted with standard web structures.
  • Answer questions and handle grumblings when they come in (Customer Support): Gartner predicts that by 2021, 25% of endeavors over the globe will have a remote helper to deal with help issues.
  • Keeping current clients glad (Customer Engagement): Our customers have seen a 65% expansion in degrees of consistency essentially by stopping an intuitive utility chatbot inside their application.
  • Learning from clients to improve your item after some time (Feedback and Insights): Customers are 3X bound to impart their input to a Bot than fill study structures.

Organizations are no special case to this standard, as an ever-increasing number of clients presently expect and incline toward talk as the essential method of correspondence, it bodes well to use the numerous advantages Conversational AI offers. It’s not only for the client, but your business can also decrease operational expenses and scale tasks hugely as well.

By guaranteeing that you’re accessible to tune in and converse with your client whenever of the day, Conversational AI guarantees that your business consistently wins good grades for commitment and availability. So, Conversational AI works all over the place.

Any business in any space that has a client touchpoint can utilize a Conversational virtual specialist. It’s better for clients and for the business. Nothing else matters.