Category: Technology of Tomorrow

Home / Category: Technology of Tomorrow

8 industries artificial intelligence is transforming

Man-made reasoning popularly known as Artificial Intelligence depicts the propelled procedure for a machine to settle on choices dependent on the rationale. Computer-based intelligence has effectively had a worldwide effect on the making of conversational chatbots, self-driving vehicles, and proposal frameworks. Artificial intelligence is developing in its notoriety among business pioneers as a rising advantage for the workforce and is by and by finding in different ventures as of now, changing how organizations and social orders work.

The use of Artificial Intelligence is on the rise and every industry seems to want a piece of it. Over the past couple of years, Artificial Intelligence and Machine Learning are being rigorously used to improve business processes and everyday new technology is being researched or developed to handle more and more complex processes.

A good number of industries have already started using Artificial Intelligence and Machine Learning in their businesses and have been able to take advantage of them to massively improve processes within the organization. Let’s have a quick look at some of the industries Artificial Intelligence is taking over and in what ways below.

Healthcare

With the whole world becoming health-conscious, this is an industry that has humongous potential.

Artificial intelligence is on the ascent inside the medicinal services industry, taking care of an assortment of issues, setting aside cash and clearing new streets to a more extensive comprehension of wellbeing sciences. AI innovations in the health insurance industry are for the most part used to productively gather singular patient information. AI has helped anesthesia conveyance and expert AI support during medicinal techniques. As per Health IT Analytics, progressive changes have been taking place in the wellness and health insurance sector with the utilization of AI-based wellbeing and medical services or devices.

Computer Vision backed by Artificial Intelligence has been very successful in analyzing data to determine diseases. With NLP and ML leading the space to study the demographics and identify health issues in that population.

Surgeries can now be made using AI-assisted bots that are more accurate and help by lowering the risk of infections, help with reducing the blood loss during surgeries and also shorten the healing time.

Finance

Artificial Intelligence and Machine learning are taking over the Finance industry by storm. It’s now been noticed that AI and ML have been able to surpass humans in a lot of important processes, from gathering financial data, analysis of this data and managing investments. Finance has been using Artificial Intelligence coupled with predictive analytics to track the changes in the stock market and identify potential investment opportunities.

Most of the leading financial institutions have also started incorporating chatbots that are very well developed specifically for the finance industry using very refined training data. JPMorgan Chase is now using AI in the form of an image recognition software with character recognition to scan and extract specific information from a huge set legal documents in just a few seconds, which would practically take months for humans to do it.

Transport

Transport is another industry where Artificial Intelligence is taking over drastically. Self-driven cars and self-driven trucks are the more popular developments in this industry but there are a lot of significant developments that have been happening in the industry in terms of incorporating Artificial Intelligence and Machine Learning.

Figuring out the best routes in terms of distance and fuel efficiency has been one of the most trusted processes for Artificial Intelligence. The Transport industry is benefitted the most by using Artificial Intelligence to gather information from an assortment of sources to streamline and alter the delivery courses and improve distribution systems.

Extensive research and development have been going on to develop self-driven cargo ships which can determine the safest and shortest route based on weather and obstructions on the way. New AI technology is being developed that can detect any type of malfunctions and hence reduce marine accidents.

Business Intelligence

Business Intelligence is an industry that is on the boom currently. The volume of data that is generated from clients is extremely valuable and Artificial Intelligence applications have been able to better analyze this data and give better insights. It has been very precise in exploring the data and giving out more refined recommendations. It is also automated which reduces the human effort significantly.

Humans no longer need to go through various charts and dashboards to speculate the important parameters, the AI integrated tools do it much more effectively and deliver more accurate results.

Artificial Intelligence has revolutionized the way we work with data. With the main goal of Business Intelligence is getting the right data to the point where a decision can be made in the shortest time possible. The demand for such AI or ML applications is increasing exponentially with new emerging requirements and data being generated.

Human Resources

Utilization of Artificial Intelligence and Machine learning in recruitment and human resources has increased substantially over the past couple of years because it decreases human effort while making the whole process more streamlined.

Blind contracting

Blind contracting is a procedure for choosing applicants without seeing them. ML calculations can analyze candidate information under determined pursuit parameters that are exclusively dependent on experience and accreditations as opposed to statistical data. This can help groups more diverse regarding abilities, instruction foundation, sexual orientation, ethnicity, and unique attributes that potential applicants bring to the table.

Retail/E-Commerce

E-Commerce is one of the biggest industries that has taken advantage of Artificial Intelligence and Machine Learning to streamline complicated processes. From analyzing online traffic, predicting accurate suggestions and optimizing the delivery process to analyzing competitor data and producing critical decision-making outputs, AI has been a harpoon to this industry.

Artificial intelligence can customize buying suggestions for clients while helping retailers to enhance valuing and rebate techniques by interest gauging.

With most of the big players in the industry even focusing on developing a user-friendly chatbot to assist consumers with picking the right product, the experience has been revolutionized. The chatbots are now capable of analyzing what product would interest the consumer and accurately suggest them which has skyrocketed sales. With the scope of further implementation of AI and ML across various processes, E-Commerce can be considered one of the biggest industries that Artificial Intelligence has taken over.

Agriculture

Agriculture is another industry where Computer Vision backed by Artificial Intelligence has changed the game. Large agricultural lands are now captured by drones and using computer vision the exact areas where weeds grow can be predicted. This has been a revolutionary step in the field of agriculture as the efficiency can be increased monstrously. This also eliminates the human effort of manually detecting key areas of the agricultural land. The data is reliable, efficient and economical.

This helps in identifying the problematic areas and also help in getting rid of the weeds and hence maximize the output.

Advertising

Businesses would normally spend thousands of dollars to run test ads to figure out the target audience. But AI-powered campaigns can provide better results with the existing data itself thereby reducing costs by more than half. This would be a game-changer in the marketing realm as brands and businesses would have a sure shot avenue to place their money in. Connecting with potential clients, creating leads and changing over them to deals, distinguishing the piece of the overall industry of another item before dispatch and rivalry research could all end up simpler with brilliant nostalgic investigation instruments.

What to expect in the next decade?

Cyborgs

In the future, we will probably expand ourselves with PCs and upgrade our very own large number of normal capacities. Although a considerable lot of these conceivable cyborg upgrades would be included for comfort, others may fill a progressively useful need. Computer-based intelligence will wind up valuable for individuals with severed appendages, as the mind will almost certainly speak with a mechanical appendage to give the patient more control. This sort of cyborg innovation would fundamentally decrease the impediments that amputees manage.

Industries being transformed with the rise of AI systems, Artificial Intelligence can take up dangerous jobs, they are in fact rambles, being utilized as the physical partner for defusing bombs, however requiring a human to control them, as opposed to utilizing AI. Whatever their order, they have spared a great many lives by assuming control more than one of the most hazardous employments on the planet. Welding is another good example of producing toxic substances, intense heat, and earsplitting noise, which could be outsourced to robots in most cases. Robot Worx explains that robotic welding cells are already in use and have safety features in place to help prevent human workers from fumes and other bodily harm.

Artificial Intelligence has not yet been developed perfectly to make robots that are capable of understanding emotions. But it is an area where a lot of pioneers are focusing on developing currently.

Most robots are as yet aloof and it’s difficult to picture a robot you could identify with. In any case, an organization in Japan has made the primary huge strides toward a robot friend—one who can comprehend and feel feelings. Soon, we will have robot friends who can understand our emotions and can relate to it. They can act as therapists providing mental therapy.

Further advancements will take place in all currently existing AI technologies the future will have more robust AI and ML applications that can be deeply personalized to suit every individual’s choices. The future of AI is exciting and promising. We can safely conclude saying AI and ML will change the world in ways unimaginable.

Top 7 ai trends in 2019

Artificial Intelligence is a method for making a system, a computer-controlled robot. AI uses information science and algorithms to mechanize, advance and discover worth escaped from the human eye. Most of us are pondering about “what’s next for AI in 2019 paving the way to 2020?” How about we explore the latest trends in AI in 2019.

AI-Enabled Chips

Companies over the globe are accommodating Artificial Intelligence in their frameworks however the procedure of cognification is a noteworthy concern they are confronting. Hypothetically, everything is getting more astute and cannier, yet the current PC chips are not good enough and are hindering the procedure.

In contrast to other programming technologies, AI vigorously depends on specific processors that supplement the CPU. Indeed, even the quickest and most progressive CPU may not be capable to improve the speed of training an AI model. The model would require additional equipment to perform scientific estimations for complex undertakings like identifying objects or items and facial recognition.

In 2019, Leading chip makers like Intel, NVidia, AMD, ARM, Qualcomm will make chips that will improve the execution speed of AI-based applications. Cutting edge applications from the social insurance and vehicle ventures will depend on these chips for conveying knowledge to end-users.

Augmented Reality

Augmented reality AI trend in 2019

Augmented reality (AR) is one of the greatest innovation patterns at this moment, and it’s just going to become greater as AR cell phones and different gadgets become increasingly available around the globe. The best examples could be Pokémon Go and Snapchat.

Objects generated from computers coexist together and communicate with this present reality in a solitary, vivid scene. This is made conceivable by melding information from numerous sensors such as cameras, gyroscopes, accelerometers, GPS, and so forth to shape a computerized portrayal of the world that can be overlaid over the physical one.

AR and AI are distinct advancements in the field of technology; however, they can be utilized together to make one of a kind encounters in 2019. Augmented reality (AR) and Artificial Intelligence (AI) advances are progressively relevant to organizations that desire to pick up a focused edge later on the work environment. In AR, a 3D portrayal of the world must be developed to enable computerized objects to exist close by physical ones. With companies such as Apple, Google, Facebook and so on offering devices and tools to make the advancement of AR-based applications simpler, 2019 will see an upsurge in the quantity of AR applications being discharged.

Neural Networks

A neural network is an arrangement of equipment as well as programming designed after the activity of neurons in the human cerebrum. Neural networks – most commonly called artificial neural networks are an assortment of profound learning innovation, which likewise falls under the umbrella of AI.

Neural networks can adjust to evolving input; so, the system produces the most ideal outcome without expecting to overhaul the yield criteria. The idea of neural networks, which has its foundations in AI, is quickly picking up prominence in the improvement of exchanging frameworks. ANN emulate the human brain. The current neural network advances will be enhanced in 2019. This would empower AI to turn out to be progressively modern as better preparing strategies and system models are created. Areas of artificial intelligence where the neural network was successfully applied include Image Recognition, Natural Language Processing, Chatbots, Sentiment Analysis, and Real-time Transcription.

The convergence of AI and IoT

IoT & AI trends in 2019

The most significant job AI will play in the business world is expanding client commitment, as indicated by an ongoing report issued by Microsoft. The Internet of Things is reshaping life as we probably are aware of it from the home to the workplace and past. IoT items award us expanded control over machines, lights, and door locks.

Organizational IoT applications would get higher exactness and expanded functionalities by the use of AI. In actuality, self-driving cars is certifiably not a commonsense plausibility without IoT working intimately with AI. The sensors utilized by a car to gather continuous information is empowered by the IoT.

Artificial intelligence and IoT will progressively combine at edge computing. Most Cloud-based models will be put at the edge layer. 2019 would see more instances of the intermingling of AI with IoT and AI with Blockchain. IoT is good to go to turn into the greatest driver of AI in the undertaking. Edge devices will be furnished with the unique AI chips dependent on FPGAs and ASICs.

Computer Vision

Computer Vision is the procedure of systems and robots reacting to visual data sources — most normally pictures and recordings. To place it in a basic way, computer vision progresses the info (yield) steps by reading (revealing) data at a similar visual level as an individual and along these lines evacuating the requirement for interpretation into machine language (the other way around). Normally, computer vision methods have the potential for a more elevated amount of comprehension and application in the human world.

While computer vision systems have been around since the 1960s, it wasn’t until recently that they grabbed the pace to turn out to be useful assets. Advancements in Machine Learning, just as the progressively skilled capacity and computational devices have empowered the ascent in the stock of Computer Vision techniques. What follows is also an explanation of how Artificial Intelligence is born. Computer vision, as a region of AI examines, has entered a far cry in a previous couple of years.

Facial Recognition

Facial recognition AI trends in 2019

Facial recognition is a type of AI application that aides in recognizing an individual utilizing their digital picture or patterns of their facial highlights. A framework utilized to perform facial recognition utilizes biometrics to outline highlights from the photograph or video. It contrasts this data and a huge database of recorded countenances to find the right match. 2019 would see an expansion in the use of this innovation with higher exactness and dependability.

In spite of having a lot of negative press lately, facial recognition is viewed as the Artificial Intelligence applications future because of its gigantic prominence. It guarantees a gigantic development in 2019. The year 2019 will observe development in the utilization of facial recognition with greater unwavering quality and upgraded precision.

Open-Source AI

Open Source AI would be the following stage in the growth of AI. Most of the Cloud-based advancements that we use today have their beginning in open source ventures. Artificial intelligence is relied upon to pursue a similar direction as an ever-increasing number of organizations are taking a gander at a joint effort and information sharing.

Open Source AI would be the following stage in the advancement of AI. Numerous organizations would begin publicly releasing their AI stacks for structuring a more extensive encouraging group of people of AI communities. This would prompt the improvement of a definitive AI open source stack.

Conclusion

Numerous innovation specialists propose that the eventual fate of AI and ML is sure. It is the place where the world is headed. In 2019 and beyond these advancements are going to support as more organizations come to understand the advantages. However, the worries encompassing the dependability and cybersecurity will keep on being fervently discussed. The ML and AI trends for 2019 and beyond hold guarantees to enhance business development while definitely contracting the dangers.

5 common misconceptions about AI

Ever wondered what your life would be without those perky machines lying around which sometimes/most times replaced a significant part of your daily routine? In Terminology fancied by Scientists, we call them AI (Artificial Intelligence,) and in plain layman or lazy man terms that is us, we fancy calling them machines and bots.

Let’s define the exact meaning of AI in terms of science because I hate disappointing aspiring scientists out there who don’t take puns lightly. For those that do, welcome to the fraternity of loose and lost minds. Let’s get down to business, shall we?

Definition: Artificial Intelligence or machine intelligence, is intelligence demonstrated by machines in contrast to the natural intelligence displayed by humans. Colloquially, the term "artificial intelligence" is often used to describe machines (or computers) that mimic "cognitive" functions that humans associate with the human mind such as "learning" and "problem-solving.”

Isn’t it evident I copied the above definition from Wikipedia? And did your natural intelligence decipher the meaning of the definition stated above?

Let me introduce you to the lazy man definition of Artificial Intelligence. Like all engineering scholars, I will take the absolute pleasure of dismantling the words and assembling it together again.

Artificial – Non-Human, something that can’t breathe air or respond to a feeling. 

Intelligence – the ability to display intellect, sound reasoning, judgment, and a ready wit.

Put the two words together and voila! Artificially intelligent machines are capable of displaying or mimicking human intellect, sound reasoning, and judgment towards it's surrounding.

Now that we got the definition of AI out of the way, look around you, what do you see? What’s in your hands? Do you not spot a single electronic device or bots?

Things or machines work a lot differently in this era. You must be awestruck of the skyrocketing shiny monuments. The big bird moving 33,000ft above your head carrying humans from one country to another, hospitals treating the diseased and the ill with technology your mind can’t fathom.

Fast cars, microwave and yes, we no longer communicate using crows or pigeons we have cell phones!

Don’t be surprised if I reveal that these are the necessity and an extension to our lives. And no, we cannot live without them anymore.

Our purpose of life has changed drastically, growing crops and putting food on the table isn’t what give us lines on the forehead. We built replacement models that take care of that too. We are living in a fast lane where technology, eventually, will slingshot us to the moon or another planet.

With such a drastic rise in AI and the current trend where all companies want a piece of it, there are some misconceptions about AI as well. With this blog, I try to debunk the misconceptions highlighting both the positive and negative aspects of artificial intelligence.

“If these machines are handling even the simplest of tasks, what are people going to do? Is it the destruction of jobs?”

Fret not. If there is technological advancement, there are always career opportunities as it is the human mind that does the ‘thinking.’ You are the master of your creation.

In fact, in 2020 there will be 2.3 million new jobs available thanks to AI, which results in less muscle power and more brainpower.

“Can Artificial Intelligence solve any/all problems?“

This question is debatable, while AI is designed to assist and make our jobs easier, it cannot save a human being from rubbing off cancers and illness.

Human intelligence hasn’t discovered a way to program the bots to predict or diagnose illness proactively. One must remember, bots act on what is fed/programmed by humans.

“Is AI infallible?“

If you thought it was, then I have slightly bad news. Humans are in a common misconception assuming the machines are no less than perfection and display little to no mistake. The non-sentient systems are trained by us, data selected and curated by us, and human tendency is to make mistakes and learn from them.

Artificial Intelligence is just as good as the training data used, which is created by humans. Any mistake with the training data will reflect on the performance of the system and the technology will be compromised. Ensuring you use a high-quality training dataset is critical to the success of the AI system.

Speaking of data being compromised, during the 2016 presidential election campaign, we witnessed the information of US citizens being evaluated by gaining access to their social media accounts. To proactively block their social media feeds with ads that will prove to be of interest. Therefore, stealing away the votes from the opposition.

We call this “data/information manipulation.” Sadly, the downside of Artificial Intelligence.

“AI must be expensive.”

Well, implementing a fully automated system doesn’t come easy and doesn’t come cheap. But depending on the needs and goals of the organization, it may be entirely possible to adopt AI and get the desired results without breaking your treasure chest.

The key is for each business to figure out what they want and apply AI as needed, for their unique goals and company scale. If businesses can workout their scalability and incorporate the right Artificial intelligence, it can be economical in the long run.

“Will Artificial Intelligence be the end of humanity?”

We are a work in progress, standing at the foyer of technological advancements with a long way to go. But, much like the misconception about robots replacing humans in the workforce, the question is more of smoke in the mirror.

The AI in its current level is not fully capable of self-conscious and decision making. Don’t let Star Trek, Iron Man and Terminator movies fool you into believing bots will lose their nuts (literally and hypothetically) and foreshadow the destruction of humanity. On the flip side, it is the natural disasters the bots are being designed to protect us from.

Oh, look what’s in every body’s hand, it’s what we call a cell phone. A device primarily designed to communicate with people that are at a greater distance.

Communication takes place using microwaves, very different from sand waves. Look closely and you’ll see people doing weird things using their fingers on the cell phone and a weird thing hanging from their ears going through to the same device. Yes, these devices are their partners for life.

Here we are, say Konnichiwa to the lady, don’t touch her! She’s just a hologram.

Welcome to the National Museum of Emerging Science and Innovation simply known as the Miraikan (future museum) where obsessiveness over technology has led us to build a museum for itself.

There’s Asimo, the Honda robot and, what you’re looking at isn’t another piece of asteroid that struck earth years ago, it is Geo-Cosmos. A high-resolution globe displaying near real-time events of global weather patterns, ocean temperatures, and vegetation covering across geographic locations.

You must be contemplating why has mankind reached such level of advancement? Let’s go back to the last question “Will AI be the end of humanity?”

The seismometer, a device that responds and records the ground motions, earthquake, and volcanic eruptions. There are a lot of countries that have lost far too many lives to even comprehend the tragic events of active earthquakes.

This device is a way to predict and bring citizens of Japan to safe grounds. Artificial Intelligence will not be the end of humanity, it can, in fact, be the opposite and could be an answer to humanity’s biggest natural calamities and disasters.

The human mind is something to behold, from its complex neural nerves in the brain to the nerves connecting to every part of the body to achieve motor functions. To replicate or clone it using artificial chips and wires is nearly impossible in the current era but the determination we hold and our adamant nature drives us to dream, the dream of one day successfully cloning the human consciousness into nuts and bolts of a bot.

One day to look at the stars and send bots for space exploration. To look for a suitable second home in an event of space disasters that humans have no control over. And, why send bots into deep space and not humans to add a feather to the hat of achievement?

Simply because we breathe, we starve, and our very own nervous system advertently detects the brutal nature of space above the earth. In this case, Artificial Intelligence and robots are in fact helping humans explore the possibilities of life in outer space. Which is against the misconception that AI will be the end of humanity.

So, there we have it, all the major misconceptions about artificial intelligence and what the reality is. End of the day, it all comes down to how we incorporate artificial intelligence and what we use it for.

If used in the right way, there will be a revolution in the way humans work. Which makes it important for all of us to work on educating people about artificial intelligence and using it to make the world a better place.

Understanding the difference between AI, ML & NLP models

Technology has revolutionized our lives and is constantly changing and progressing. The most flourishing technologies include Artificial Intelligence, Machine Learning, Natural Language Processing, and Deep Learning. These are the most trending technologies growing at a fast pace and are today’s leading-edge technologies.

These terms are generally used together in some contexts but do not mean the same and are related to each other in some or the other way. ML is one of the leading areas of AI which allows computers to learn by themselves and NLP is a branch of AI.

What is Artificial Intelligence?

Artificial refers to something not real and Intelligence stands for the ability of understanding, thinking, creating and logically figuring out things. These two terms together can be used to define something which is not real yet intelligent.

AI is a field of computer science that emphasizes on making intelligent machines to perform tasks commonly associated with intelligent beings. It basically deals with intelligence exhibited by software and machines.

While we have only recently begun making meaningful strides in AI, its application has encompassed a wide spread of areas and impressive use-cases. AI finds application in very many fields, from assisting cameras, recognizing landscapes, and enhancing picture quality to use-cases as diverse and distinct as self-driving cars, autonomous robotics, virtual reality, surveillance, finance, and health industries.

History of AI

The first work towards AI was carried out in 1943 with the evolution of Artificial Neurons. In 1950, Turing test was conducted by Alan Turing that can check the machine’s ability to exhibit intelligence.

The first chatbot was developed in 1966 and was named ELIZA followed by the development of the first smart robot, WABOT-1. The first AI vacuum cleaner, ROOMBA was introduced in the year 2002. Finally, AI entered the world of business with companies like Facebook and Twitter using it.

Google’s Android app “Google Now”, launched in the year 2012 was again an AI application. The most recent wonder of AI is “the Project Debater” from IBM. AI has currently reached a remarkable position

The areas of application of AI include

  • Chat-bots – An ever-present agent ready to listen to your needs complaints and thoughts and respond appropriately and automatically in a timely fashion is an asset that finds application in many places — virtual agents, friendly therapists, automated agents for companies, and more.
  • Self-Driving Cars: Computer Vision is the fundamental technology behind developing autonomous vehicles. Most leading car manufacturers in the world are reaping the benefits of investing in artificial intelligence for developing on-road versions of hands-free technology.
  • Computer Vision: Computer Vision is the process of computer systems and robots responding to visual inputs — most commonly images and videos.
  • Facial Recognition: AI helps you detect faces, identify faces by name, understand emotion, recognize complexion and that’s not the end of it.

What is Machine Learning?

One of the major applications of Artificial Intelligence is machine learning. ML is not a sub-domain of AI but can be generally termed as a sub-field of AI. The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience.

Implementing an ML model requires a lot of data known as training data which is fed into the model and based on this data, the machine learns to perform several tasks. This data could be anything such as text, images, audio, etc…

 Machine learning draws on concepts and results from many fields, including statistics, artificial intelligence, philosophy, information theory, biology, cognitive science, computational complexity and control theory. ML itself is a self-learning algorithm. The different algorithms of ML include Decision Trees, Neural Networks, SEO, Candidate Elimination, Find-S, etc.

History of Machine Learning

The roots of ML lie way back in the 17th century with the introduction of Mechanical Adder and Mechanical System for Statistical Calculations. Turing Test conducted in 1950 was again a turning point in the field of ML.

The most important feature of ML is “Self-Learning”. The first computer learning program was written by Arthur Samuel for the game of checkers followed by the designing of perceptron (neural network). “The Nearest Neighbor” algorithm was written for pattern recognition.

Finally, the introduction of adaptive learning was introduced in the early 2000s which is currently progressing rapidly with Deep Learning is one of its best examples.

Different types of machine learning approaches are:

Supervised Learning uses training data which is correctly labeled to teach relationships between given input variables and the preferred output.

Unsupervised Learning doesn’t have a training data set but can be used to detect repetitive patterns and styles.

Reinforcement Learning encourages trial-and-error learning by rewarding and punishing respectively for preferred and undesired results.

ML has several applications in various fields such as

  • Customer Service: ML is revolutionizing customer service, catering to customers by providing tailored individual resolutions as well as enhancing the human service agent capability through profiling and suggesting proven solutions. 
  • HealthCare: The use of different sensors and devices use data to access a patient’s health status in real-time.
  • Financial Services: To get the key insights into financial data and to prevent financial frauds.
  • Sales and Marketing: This majorly includes digital marketing, which is currently an emerging field, uses several machine learning algorithms to enhance the purchases and to enhance the ideal buyer journey.

What is Natural Language Processing?

Natural Language Processing is an AI method of communicating with an intelligent system using a natural language.

Natural Language Processing (NLP) and its variants Natural Language Understanding (NLU) and Natural Language Generation (NLG) are processes which teach human language to computers. They can then use their understanding of our language to interact with us without the need for a machine language intermediary.

History of NLP

NLP was introduced mainly for machine translation. In the early 1950s attempts were made to automate language translation. The growth of NLP started during the early ’90s which involved the direct application of statistical methods to NLP itself. In 2006, more advancement took place with the launch of IBM’s Watson, an AI system which is capable of answering questions posed in natural language. The invention of Siri’s speech recognition in the field of NLP’s research and development is booming.

Few Applications of NLP include

  • Sentiment Analysis – Majorly helps in monitoring Social Media
  • Speech Recognition – The ability of a computer to listen to a human voice, analyze and respond.
  • Text Classification – Text classification is used to assign tags to text according to the content.
  • Grammar Correction – Used by software like MS-Word for spell-checking.

What is Deep Learning?

The term “Deep Learning” was first coined in 2006. Deep Learning is a field of machine learning where algorithms are motivated by artificial neural networks (ANN). It is an AI function that acts lie a human brain for processing large data-sets. A different set of patterns are created which are used for decision making.

The motive of introducing Deep Learning is to move Machine Learning closer to its main aim. Cat Experiment conducted in 2012 figured out the difficulties of Unsupervised Learning. Deep learning uses “Supervised Learning” where a neural network is trained using “Unsupervised Learning”.

Taking inspiration from the latest research in human cognition and functioning of the brain, neural network algorithms were developed which used several ‘nodes’ that process information like how neurons do. These networks have multiple layers of nodes (deep nodes and surface nodes) for different complexities, hence the term deep learning. The different activation functions used in Deep Learning include linear, sigmoid, tanh, etc.…

History of Deep Learning

The history of Deep Learning includes the introduction of “The Back-Propagation” algorithm, which was introduced in 1974, used for enhancing prediction accuracy in ML.  Recurrent Neural Network was introduced in 1986 which takes a series of inputs with no predefined limit, followed by the introduction of Bidirectional Recurrent Neural Network in 1997.  In 2009 Salakhutdinov & Hinton introduced Deep Boltzmann Machines. In the year 2012, Geoffrey Hinton introduced Dropout, an efficient way of training neural networks

Applications of Deep Learning are

  • Text and Character generation – Natural Language Generation.
  • Automatic Machine Translation – Automatic translation of text and images.
  • Facial Recognition: Computer Vision helps you detect faces, identify faces by name, understand emotion, recognize complexion and that’s not the end of it.
  • Robotics: Deep learning has also been found to be effective at handling multi-modal data generated in robotic sensing applications.

Key Differences between AI, ML, and NLP

Artificial intelligence (AI) is closely related to making machines intelligent and make them perform human tasks. Any object turning smart for example, washing machine, cars, refrigerator, television becomes an artificially intelligent object. Machine Learning and Artificial Intelligence are the terms often used together but aren’t the same.

ML is an application of AI. Machine Learning is basically the ability of a system to learn by itself without being explicitly programmed. Deep Learning is a part of Machine Learning which is applied to larger data-sets and based on ANN (Artificial Neural Networks).

The main technology used in NLP (Natural Language Processing) which mainly focuses on teaching natural/human language to computers. NLP is again a part of AI and sometimes overlaps with ML to perform tasks. DL is the same as ML or an extended version of ML and both are fields of AI. NLP is a part of AI which overlaps with ML & DL.

Drone Revolution | Blog | Bridged.co

It’s a bird, it’s a plane… Oh, wait it’s a Drone!

Also known as Unmanned Aerial Vehicles (UAVs), drones have no human pilot onboard and are controlled by either a person with a remote control/smartphone on the ground or autonomously via a computer program.

These devices are already popular in various industries like Defense, Film making and Photography and are gaining popularity in fields like Farming, Atmospheric research, and Disaster relief. But even after so much innovation and experimentation, we have not explored the full capacity of data gained from drones.

We at Bridged AI are aware of this fact and are contributing to this revolution by helping the drone companies in perfecting their models by providing them with curated training data.

Impact of Drones

Drones inspecting power lines

Drones are being used by companies like GE to inspect their infrastructure, including power lines and pipelines. They can be used by companies and service organizations to provide instant surveillance in multiple locations instantly.

Surveillance by drones

They can be used for tasks like patrolling borders, tracking storms, and monitoring security. Drones are already being used by some defense services.

Border patrolling
Drones surveying farms

In agriculture, drones are used by farmers to analyze their farms for keeping a check on yield, unwanted plants or any other significant changes the crops go through.

Drones at their best

Drones can only unlock their full potential when they are at a high degree of automation. Some sectors in which drones are being used in combination with artificial intelligence are:

Image Recognition

Drones can only unlock their full potential when they are at a high degree of automation. Some sectors in which drones are being used in combination with artificial intelligence are:

Image Recognition

Drones use sensors such as electro-optical, stereo-optical, and LiDAR to perceive and absorb the environment or objects in some way.

Computer Vision

Computer Vision is concerned with the automatic extraction, analysis, and understanding of useful information from one or more drone images.

Deep Learning

Deep learning is a specialized method of information processing and a subset of machine learning that uses neural networks and huge amounts of data for decision-making.

DJI’s Drone

Drones with Artificial Intelligence

The term Artificial intelligence is now routinely used in the Drone industry.

The goal of drones and artificial intelligence is to make efficient use of large data sets as automated and seamless as possible.

A large amount of data nowadays is collected by drones in different forms.

This amount of data is very difficult to handle, and proper tools and techniques are required to turn the data to a usable form.

Combination of drones with AI has turned out to be very astounding and indispensable.

AI describes the capability of machines that can perform sophisticated tasks which have characteristics of human intelligence and includes things like reasoning, problem-solving, planning and learning.

Future with Drones and AI

In just a few years, drones have influenced and redefined a variety of industries.

When on the one hand the business tycoons believe that automated drones are the future, on the other hand, many people are threatened by the possibility of this technology becoming wayward. This belief is inspired by many sci-fi movies like The Terminator, Blade Runner and recently Avengers: The Age of Ultron.

What happens when a robot develops a brain of its own? What happens if they realize their ascendancy? What happens if they start thinking of humans as an inferior race? What if they take up arms?!

“We do not have long to act,” Elon Musk, Stephen Hawking, and 114 other specialists wrote. “Once this Pandora’s box is opened, it will be hard to close.”

Having said that, it is the inherent nature of humans to explore and invent. The possibilities that AI-powered drones bring along are too charming and exciting to let go.

At Bridged AI we are not only working on the goal of utilising AI-powered drone data but also helping other AI companies by creating curated data sets to train machine learning algorithms for various purposes — Self-driving Cars, Facial Recognition, Agri-tech, Chatbots, Customer Service bots, Virtual Assistants, NLP and more.

Development of artificial intelligence - a brief history | Blog | Bridged.co

The Three Laws of Robotics — Handbook of Robotics, 56th Edition, 2058 A.D.
1. First Law — A robot may not injure a human being or, through inaction, allow a human being to come to harm.
2. Second Law — A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
3. Third Law — A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

Ever since Isaac Asimov penned down these fictional rules governing the behavior of intelligent robots — in 1942 — humanity has become fixated with the idea of making intelligent machines. After British mathematician Alan Turing devised the Turing Test as a benchmark for machines to be considered sufficiently smart, the term artificial intelligence was coined in 1956 at a summer conference in Dartmouth University, USA for the first time. Prominent scientists and researchers debated the best approaches to creating AI, favoring one that begins by teaching a computer the rules governing human behavior — using reason and logic to process available information.

There was plenty of hype and excitement about AI and several countries started funding research as well. Two decades in, the progress made did not deliver on the initial enthusiasm or have a major real-world implementation. Millions had been spent with nothing to show for it, and the promise of AI failed to become anything more substantial than programs learning to play chess and checkers. Funding for AI research was cut down heavily, and we had what was called an AI Winter which stalled further breakthroughs for several years.

Gary Kasparov vs IBM Deep blue | Blog | Bridged.co

Programmers then focused on smaller specialized tasks for AI to learn to solve. The reduced scale of ambition brought success back to the field. Researchers stopped trying to build artificial general intelligence that would implement human learning techniques and focused on solving particular problems. In 1997, for example, IBM supercomputer Deep Blue played and won against the then world chess champion Gary Kasparov. The achievement was still met with caution, as it showcased success only in a highly specialized problem with clear rules using more or less just a smart search algorithm.

The turn of the century changed the AI status quo for the better. A fundamental shift in approach was brought in that moved away from pre-programming a computer with rules of intelligent behavior, to training a computer to recognize patterns and relationships in data — machine learning. Taking inspiration from the latest research in human cognition and functioning of the brain, neural network algorithms were developed which used several ‘nodes’ that process information similar to how neurons do. These networks have multiple layers of nodes (deep nodes and surface nodes) for different complexities, hence the term deep learning.

Representation of neural networks | Blog | Bridged.co

Different types of machine learning approaches were developed at this time:

Supervised Learning uses training data which is correctly labeled to teach relationships between given input variables and the preferred output.

Unsupervised Learning doesn’t have a training data set but can be used to detect repetitive patterns and styles.

Reinforcement Learning encourages trial-and-error learning by rewarding and punishing respectively for preferred and undesired results.

Along with better-written algorithms, several other factors helped accelerate progress:

Exponential improvements in computing capability with the development of Graphical Processing Units (GPUs) and Tensor Processing Units have reduced training times and enabled implementation of more complex algorithms.

Data repositories for AI systems | Blog | Bridged.co

The availability of massive amounts of data today has also contributed to sharpening machine learning algorithms. The first significant phase of data creation happened with the spread of the internet, with large scale creation of documents and transactions. The next big leap was with the universal adoption of smartphones generating tons of disorganized data — images, music, videos, and docs. We have another phase of data explosion today with cloud networks and smart devices constantly collecting and storing digital information. With so much data available to train neural networks on potential scores of use-cases, significant milestones can be surpassed, and we are now witnessing the result of decades of optimistic strides.

  • Google has built autonomous cars.
  • Microsoft used machine learning to capture human movement in the development of Kinect for Xbox 360.
  • IBM’s Watson defeated previous winners on the television show Jeopardy! where contestants need to come up with general knowledge questions based on given clues.
  • Apple’s Siri, Amazon’s Alexa, Google Voice Assistant, Microsoft’s Cortana, etc. are well-equipped conversational AI assistants that process language and perform tasks based on voice commands.
Developments in AI | Blog | Bridged.co
  • AI is becoming capable of learning from scratch the best strategies and gameplay to defeat human players in multiple games — Chinese board game Go by Google DeepMind’s AlphaGo, computer game DotA 2 by OpenAI are two prolific instances.
  • Alibaba language processing AI outscored top contestants in a reading and comprehension test conducted by Stanford University.
  • And most recently, Google Duplex has learned to use human-sounding speech almost flawlessly to make appointments over the phone for the user.
  • We have even created a Chatbot (called Eugene Goostman) that passed the Turing Test, 64 years after it was first proposed.

All the above examples are path-breaking in each field, but they also show the kind of specialized results that we have managed to attain. In addition, such achievements were realized only by organizations which have access to the best resources — finance, talent, hardware, and data. Building a humanoid bot which can be taught any task using a general artificial intelligence algorithm is still some distance away, but we are taking the right steps in that direction.

Bridged's service offerings | Blog | Bridged.co

Bridged is helping companies realize their dream of developing AI bots and apps by taking care of their training data requirements. We create curated data sets to train machine learning algorithms for various purposes — Self-driving Cars, Facial Recognition, Agri-tech, Chatbots, Customer Service bots, Virtual Assistants, NLP and more.


NLP in AI and the realization of futuristic robots

How a well-trained conversational AI can empower your business

When the most valuable asset in the world is data, the most powerful tool you can have is the ability to process exabytes of information that data has to offer, and productively so. As we begin to produce gigabytes of digital data every day, De Toekomst — The Future — is with those that can effectively utilize this space, or more appropriately, the cloud. And it is precisely here that Artificial Intelligence is making its mark.

While we have only recently begun making meaningful strides in AI, its application has encompassed a wide spread of areas and impressive use-cases. And the sphere where AI is making its presence felt like a real and tangible entity is when it has a voice of its own. Natural Language Processing (NLP) and its variants Natural Language Understanding (NLU) and Natural Language Generation (NLG) are processes which teach human language to computers. They can then use their understanding of our language to interact with us without the need for a machine language intermediary.

AI has grown to become our personal assistant helping us with tasks at our behest, literally. Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana and Google Voice Assistant are only a few examples of AI systems integrating themselves seamlessly into our daily lives and routine. They help us plan our schedules, carry out functions without us having to push a single button, inform us of the latest developments, all the while learning more about our preferences and customizing themselves for us just by listening. With our permission, AI can become our best help.

Leading voice assistants | Blog | Bridged.co

How businesses are leveraging the AI assistant

Equipped with the knowledge of human communication, AI bots can potentially be used in any field that involves language to derive fast, intelligent, and useful insights which can then be transformed into follow-up actions tailored for each customer. Companies have realized the benefits of this incredibly powerful service and have begun utilizing them to gain significant market advantages. We will now talk about a few major applications of the conversational AI, and how we at Bridged are helping companies realize their ambitions for the AI-driven future.

Voice Control and Assistance

Voice control and assistance | Blog | Bridged.co

Performing basic tasks — reading messages, checking notifications, news updates, changing settings, operating connected devices, speech-to-text services.

Planning and Scheduling — setting up meetings, calendar events, automated replies, navigation, online assistance, payments.

Personalization and Security — compiling playlists, product suggestions, mood-based ambiance control, surveillance, and security.

Bridged.co Services: Voice Recognition, Speech Synthesis, Search Relevance.

Chat-bots

Chatbots training | Blog | Bridged.co

An ever-present agent ready to listen to your needs complaints and thoughts, and respond appropriately and automatically in a timely fashion is an asset that finds application in many places — virtual agents, friendly therapists, automated agents for companies, and more.

Bridged.co Services: Chat-bot Training, Virtual Assistant Training, NLP.

Sentiment Analysis

Sentiment analysis | Blog | Bridged.co

The ability to monitor end-user opinions of a brand or product and gain an understanding of the same on a large scale is clutch in any competitive scenario. Customer retention has become a zero-sum game and sentiment analysis stands at the center of this marketing field. Armed with NLP and machine learning, AI can listen to the scores of available user opinions across multiple platforms be it social media or community forums or even personal blogs. Accurate analyses of brand value at scale provided by accurate AI are invaluable to businesses.

Bridged.co Services: Brand Sentiment Analysis, E-commerce Recommendations, User Content Support.

Customer Service

Customer service | Blog | Bridged.co

AI is revolutionizing customer service, catering to customers by providing tailored individual resolutions as well as enhancing the human service agent capability through profiling and suggesting proven solutions. AI can be put up to a) responding to common queries, b) as a first layer of gathering service request info and routine troubleshooting, c) integrating with the resolution system, learning from successful cases, and suggesting or implementing final calls. AI makes the whole system faster and more efficient.

Bridged.co Services: Chat-bot Training, Sentiment Analysis, User Content Support.

Translate languages as you speak

The need for a multi-language translation book or for a local guide to communicating your need in a tongue you don’t speak is reduced with the advent of live translation by conversation bots that speak your message out loud, as and when you call on them right from your phones and smart devices.

Bridged.co Services: NLP, Voice Recognition, Speech Analysis.

Real-time Transcription

You can count on AI to take down notes for when you are in meetings or need to parse audio or video clips, or just want to pen down your thoughts. Transcription of speech to text is a very common application and finds use in several business tasks.

Bridged.co Services: Audio/Video Transcription, NLP, Voice Recognition.

We are at a very exciting juncture in the development of AI technology. New machine learning techniques including deep learning applied to NLP processes have made it possible to stretch the boundaries of what can be built using AI bots.