Category: All About Data

Home / Category: All About Data

8 industries artificial intelligence is transforming

Man-made reasoning popularly known as Artificial Intelligence depicts the propelled procedure for a machine to settle on choices dependent on the rationale. Computer-based intelligence has effectively had a worldwide effect on the making of conversational chatbots, self-driving vehicles, and proposal frameworks. Artificial intelligence is developing in its notoriety among business pioneers as a rising advantage for the workforce and is by and by finding in different ventures as of now, changing how organizations and social orders work.

The use of Artificial Intelligence is on the rise and every industry seems to want a piece of it. Over the past couple of years, Artificial Intelligence and Machine Learning are being rigorously used to improve business processes and everyday new technology is being researched or developed to handle more and more complex processes.

A good number of industries have already started using Artificial Intelligence and Machine Learning in their businesses and have been able to take advantage of them to massively improve processes within the organization. Let’s have a quick look at some of the industries Artificial Intelligence is taking over and in what ways below.

Healthcare

With the whole world becoming health-conscious, this is an industry that has humongous potential.

Artificial intelligence is on the ascent inside the medicinal services industry, taking care of an assortment of issues, setting aside cash and clearing new streets to a more extensive comprehension of wellbeing sciences. AI innovations in the health insurance industry are for the most part used to productively gather singular patient information. AI has helped anesthesia conveyance and expert AI support during medicinal techniques. As per Health IT Analytics, progressive changes have been taking place in the wellness and health insurance sector with the utilization of AI-based wellbeing and medical services or devices.

Computer Vision backed by Artificial Intelligence has been very successful in analyzing data to determine diseases. With NLP and ML leading the space to study the demographics and identify health issues in that population.

Surgeries can now be made using AI-assisted bots that are more accurate and help by lowering the risk of infections, help with reducing the blood loss during surgeries and also shorten the healing time.

Finance

Artificial Intelligence and Machine learning are taking over the Finance industry by storm. It’s now been noticed that AI and ML have been able to surpass humans in a lot of important processes, from gathering financial data, analysis of this data and managing investments. Finance has been using Artificial Intelligence coupled with predictive analytics to track the changes in the stock market and identify potential investment opportunities.

Most of the leading financial institutions have also started incorporating chatbots that are very well developed specifically for the finance industry using very refined training data. JPMorgan Chase is now using AI in the form of an image recognition software with character recognition to scan and extract specific information from a huge set legal documents in just a few seconds, which would practically take months for humans to do it.

Transport

Transport is another industry where Artificial Intelligence is taking over drastically. Self-driven cars and self-driven trucks are the more popular developments in this industry but there are a lot of significant developments that have been happening in the industry in terms of incorporating Artificial Intelligence and Machine Learning.

Figuring out the best routes in terms of distance and fuel efficiency has been one of the most trusted processes for Artificial Intelligence. The Transport industry is benefitted the most by using Artificial Intelligence to gather information from an assortment of sources to streamline and alter the delivery courses and improve distribution systems.

Extensive research and development have been going on to develop self-driven cargo ships which can determine the safest and shortest route based on weather and obstructions on the way. New AI technology is being developed that can detect any type of malfunctions and hence reduce marine accidents.

Business Intelligence

Business Intelligence is an industry that is on the boom currently. The volume of data that is generated from clients is extremely valuable and Artificial Intelligence applications have been able to better analyze this data and give better insights. It has been very precise in exploring the data and giving out more refined recommendations. It is also automated which reduces the human effort significantly.

Humans no longer need to go through various charts and dashboards to speculate the important parameters, the AI integrated tools do it much more effectively and deliver more accurate results.

Artificial Intelligence has revolutionized the way we work with data. With the main goal of Business Intelligence is getting the right data to the point where a decision can be made in the shortest time possible. The demand for such AI or ML applications is increasing exponentially with new emerging requirements and data being generated.

Human Resources

Utilization of Artificial Intelligence and Machine learning in recruitment and human resources has increased substantially over the past couple of years because it decreases human effort while making the whole process more streamlined.

Blind contracting

Blind contracting is a procedure for choosing applicants without seeing them. ML calculations can analyze candidate information under determined pursuit parameters that are exclusively dependent on experience and accreditations as opposed to statistical data. This can help groups more diverse regarding abilities, instruction foundation, sexual orientation, ethnicity, and unique attributes that potential applicants bring to the table.

Retail/E-Commerce

E-Commerce is one of the biggest industries that has taken advantage of Artificial Intelligence and Machine Learning to streamline complicated processes. From analyzing online traffic, predicting accurate suggestions and optimizing the delivery process to analyzing competitor data and producing critical decision-making outputs, AI has been a harpoon to this industry.

Artificial intelligence can customize buying suggestions for clients while helping retailers to enhance valuing and rebate techniques by interest gauging.

With most of the big players in the industry even focusing on developing a user-friendly chatbot to assist consumers with picking the right product, the experience has been revolutionized. The chatbots are now capable of analyzing what product would interest the consumer and accurately suggest them which has skyrocketed sales. With the scope of further implementation of AI and ML across various processes, E-Commerce can be considered one of the biggest industries that Artificial Intelligence has taken over.

Agriculture

Agriculture is another industry where Computer Vision backed by Artificial Intelligence has changed the game. Large agricultural lands are now captured by drones and using computer vision the exact areas where weeds grow can be predicted. This has been a revolutionary step in the field of agriculture as the efficiency can be increased monstrously. This also eliminates the human effort of manually detecting key areas of the agricultural land. The data is reliable, efficient and economical.

This helps in identifying the problematic areas and also help in getting rid of the weeds and hence maximize the output.

Advertising

Businesses would normally spend thousands of dollars to run test ads to figure out the target audience. But AI-powered campaigns can provide better results with the existing data itself thereby reducing costs by more than half. This would be a game-changer in the marketing realm as brands and businesses would have a sure shot avenue to place their money in. Connecting with potential clients, creating leads and changing over them to deals, distinguishing the piece of the overall industry of another item before dispatch and rivalry research could all end up simpler with brilliant nostalgic investigation instruments.

What to expect in the next decade?

Cyborgs

In the future, we will probably expand ourselves with PCs and upgrade our very own large number of normal capacities. Although a considerable lot of these conceivable cyborg upgrades would be included for comfort, others may fill a progressively useful need. Computer-based intelligence will wind up valuable for individuals with severed appendages, as the mind will almost certainly speak with a mechanical appendage to give the patient more control. This sort of cyborg innovation would fundamentally decrease the impediments that amputees manage.

Industries being transformed with the rise of AI systems, Artificial Intelligence can take up dangerous jobs, they are in fact rambles, being utilized as the physical partner for defusing bombs, however requiring a human to control them, as opposed to utilizing AI. Whatever their order, they have spared a great many lives by assuming control more than one of the most hazardous employments on the planet. Welding is another good example of producing toxic substances, intense heat, and earsplitting noise, which could be outsourced to robots in most cases. Robot Worx explains that robotic welding cells are already in use and have safety features in place to help prevent human workers from fumes and other bodily harm.

Artificial Intelligence has not yet been developed perfectly to make robots that are capable of understanding emotions. But it is an area where a lot of pioneers are focusing on developing currently.

Most robots are as yet aloof and it’s difficult to picture a robot you could identify with. In any case, an organization in Japan has made the primary huge strides toward a robot friend—one who can comprehend and feel feelings. Soon, we will have robot friends who can understand our emotions and can relate to it. They can act as therapists providing mental therapy.

Further advancements will take place in all currently existing AI technologies the future will have more robust AI and ML applications that can be deeply personalized to suit every individual’s choices. The future of AI is exciting and promising. We can safely conclude saying AI and ML will change the world in ways unimaginable.

8 resources to get free training data for ml systems

The current technological landscape has exhibited the need for feeding Machine Learning systems with useful training data sets. Training data helps a program understand how to apply technology such as neural networks. This is to help it to learn and produce sophisticated results.

The accuracy and relevance of these sets pertaining to the ML system they are being fed into are of paramount importance, for that dictates the success of the final model. For example, if a customer service chatbot is to be created which responds courteously to user complaints and queries, its competency will be highly determined by the relevancy of the training data sets given to it.

To facilitate the quest for reliable training data sets, here is a list of resources which are available free of cost.

Kaggle

Owned by Google LLC, Kaggle is a community of data science enthusiasts who can access and contribute to its repository of code and data sets. Its members are allowed to vote and run kernel/scripts on the available datasets. The interface allows users to raise doubts and answer queries from fellow community members. Also, collaborators can be invited for direct feedback.

The training data sets uploaded on Kaggle can be sorted using filters such as usability, new and most voted among others. Users can access more than 20,000 unique data sets on the platform.

Kaggle is also popularly known among the AI and ML communities for its machine learning competitions, Kaggle kernels, public datasets platform, Kaggle learn and jobs board.

Examples of training datasets found here include Satellite Photograph Order and Manufacturing Process Failures.

Registry of Open Data on AWS

As its website displays, Amazon Web Services allows its users to share any volume of data with as many people they’d like to. A subsidiary of Amazon, it allows users to analyze and build services on top of data which has been shared on it.  The training data can be accessed by visiting the Registry for Open Data on AWS.

Each training dataset search result is accompanied by a list of examples wherein the data could be used, thus deepening the user’s understanding of the set’s capabilities.

The platform emphasizes the fact that sharing data in the cloud platform allows the community to spend more time analyzing data rather than searching for it.

Examples of training datasets found here include Landsat Images and Common Crawl Corpus.

UCI Machine Learning Repository

Run by the School of Information & Computer Science, UC Irvine, this repository contains a vast collection of ML system needs such as databases, domain theories, and data generators. Based on the type of machine learning problem, the datasets have been classified. The repository has also been observed to have some ready to use data sets which have already been cleaned.

While searching for suitable training data sets, the user can browse through titles such as default task, attribute type, and area among others. These titles allow the user to explore a variety of options regarding the type of training data sets which would suit their ML models best.

The UCI Machine Learning Repository allows users to go through the catalog in the repository along with datasets outside it.

Examples of training data sets found here include Email Spam and Wine Classification.

Microsoft Research Open Data

The purpose of this platform is to promote the collaboration of data scientists all over the world. A collaboration between multiple teams at Microsoft, it provides an opportunity for exchanging training data sets and a culture of collaboration and research.

The interface allows users to select datasets under categories such as Computer Science, Biology, Social Science, Information Science, etc. The available file types are also mentioned along with details of their licensing.

Datasets spanning from Microsoft Research to advance state of the art research under domain-specific sciences can be accessed in this platform.

GitHub.com/awesomedata/awesomepublicdatasets

GitHub is a community of software developers who apart from many things can access free datasets. Companies like Buzzfeed are also known to have uploaded data sets on federal surveillance planes, zika virus, etc. Being an open-source platform, it allows users to contribute and learn about training data sets and the ones most suitable for their AI/ML models.

Socrata Open Data

This portal contains a vast variety of data sets which can be viewed on its platform and downloaded. Users will have to sort through data which is currently valid and clean to find the most useful ones. The platform allows the data to be viewed in a tabular form. This added with its built-in visualization tools makes the training data in the platform easy to retrieve and study.

Examples of sets found in this platform include White House Staff Salaries and Workplace Fatalities by US State.

R/datasets

This subreddit is dedicated to sharing training datasets which could be of interest to multiple community members. Since these are uploaded by everyday users, the quality and consistency of the training sets could vary, but the useful ones can be easily filtered out.

Examples of training datasets found in this subreddit include New York City Property Tax Data and Jeopardy Questions.

Academic Torrents

This is basically a data aggregator in which training data from scientific papers can be accessed. The training data sets found here are in many cases massive and they can be accessed directly on the site. If the user has a BitTorrent client, they can download any available training data set immediately.

Examples of available training data sets include Enron Emails and Student Learning Factors.

Conclusion

In an age where data is arguably the world’s most valuable resource, the number of platforms which provide this is also vast. Each platform caters to its own niche within the field while also displaying commonly sought after datasets.  While the quality of training data sets could vary across the board, with the appropriate filters, users can access and download the data sets which suit their machine learning models best. If you need a custom dataset, do check us out here, share your requirements with us, and we’ll more than happy to help you out!

10 free image training data resources online

Not too long ago, we would have chuckled at the idea of a vehicle driving itself while the driver catches those extra few minutes of precious sleep. But this is 2019, where self-driving cars aren’t just in the prototyping stage but being actively rolled out to the public. And, remember those days when we were marveled by a device recognizing it’s users face? Well, that’s a norm in today’s world. With rapid developments, AI & ML technologies are increasingly penetrating our lives. However, developments of such systems are no easy task. It requires hours of coding and thousands, if not millions, of data to train & test these systems. While there are a plethora of training data service providers that can help you with your requirements, it’s not always feasible. So, how can you get free image datasets?

There are various areas online where you can discover Image Datasets. A lot of research bunches likewise share the labeled image datasets they have gathered with the remainder of the network to further machine learning examine in a specific course.

In this post, you’ll find top 9 free image training data repositories and links to portals you’re ready to visit and locate the ideal image dataset that is pertinent to your projects. Enjoy!

Labelme

Free image training dataset at labelme | Bridged.co

This site contains a huge dataset of annotated images.

Downloading them isn’t simple, however. There are two different ways you can download the dataset:

1. Downloading all the images via the LabelMe Matlab toolbox. The toolbox will enable you to tweak the part of the database that you need to download.

2. Utilizing the images online using the LabelMe Matlab toolbox. This choice is less favored as it will be slower, yet it will enable you to investigate the dataset before downloading it. When you have introduced the database, you can utilize the LabelMe Matlab toolbox to peruse the annotation records and query the images to extricate explicit items.

ImageNet

Free image training dataset at ImageNet | Bridged.co

The image dataset for new algorithms is composed by the WordNet hierarchy, in which every hub of the hierarchy is portrayed by hundreds and thousands of images.

Downloading datasets isn’t simple, however. You’ll need to enroll on the website, hover over the ‘Download’ menu dropdown, and select ‘Original Images.’ Given you’re utilizing the datasets for educational/personal use, you can submit a request for access to download the original/raw images.

MS COCO

Free image training dataset at mscoco | Bridged.co

Common objects in context (COCO) is a huge scale object detection, division, and subtitling dataset.

The dataset — as the name recommends — contains a wide assortment of regular articles we come across in our everyday lives, making it perfect for preparing different Machine Learning models.

COIL100

Free image training dataset at coil100 | Bridged.co

The Columbia University Image Library dataset highlights 100 distinct objects — going from toys, individual consideration things, tablets — imaged at each point in a 360° turn.

The site doesn’t expect you to enroll or leave any subtleties to download the dataset, making it a simple procedure.

Google’s Open Images

Free image training data at Google | Bridged.co

This dataset contains an accumulation of ~9 million images that have been annotated with image-level labels and object bounding boxes.

The training set of V4 contains 14.6M bounding boxes for 600 object classes on 1.74M images, making it the biggest dataset to exist with object location annotations.

Fortunately, you won’t have to enroll on the website or leave any personal subtleties to get the dataset allowing you to download the dataset from the site without any obstructions.

On the off chance that you haven’t heard till now, Google recently released a new dataset search tool that could prove to be useful if you have explicit prerequisites.

Labelled Faces in the Wild

Free image training dataset at Labeled Faces in The Wild | BridgedCo

This portal contains 13,000 labeled images of human faces that you can readily use in any of your Machine Learning projects, including facial recognition.

You won’t have to stress over enrolling or leaving your subtleties to get to the dataset either, making it too simple to download the records you need, and begin training your ML models!

Stanford Dogs Dataset

Image training data at Stanford Dogs Dataset | Bridged.co

It contains 20,580 images and 120 distinctive dog breed categories.

Made utilizing images from ImageNet, this dataset from Stanford contains images of 120 breeds of dogs from around the globe. This dataset has been fabricated utilizing images and annotation from ImageNet for the undertaking of fine-grained picture order.

To download the dataset, you can visit their website. You won’t have to enroll or leave any subtleties to download anything, basically click and go!

Indoor Scene Recognition

Free image training data at indoor scene recognition | Bridged.co

As the name recommends, this dataset containing 15620 images involving different indoor scenes which fall under 67 indoor classes to help train your models.

The particular classifications these images fall under incorporated stores, homes, open spaces, spots of relaxation, and working spots — which means you’ll have a differing blend of images used in your projects!

Visit the page to download this dataset from the site.

LSUN

This dataset is useful for scene understanding with auxiliary assignment ventures (room design estimation, saliency forecast, and so forth.).

The immense dataset, containing pictures from different rooms (as portrayed above), can be downloaded by visiting the site and running the content gave, found here.

You can discover more data about the dataset by looking down to the ‘scene characterization’ header and clicking ‘README’ to get to the documentation and demo code.

Well, here are the top 10 repositories to help you get image training data to help in the development of your AI & ML models. However, given the public nature of these datasets, they may not always help your systems generate the correct output.

Since every system requires it’s own set of data that are close to ground realities to formulate the most optimal results, it is always better to build training datasets that cater to your exact requirements and can help your AI/ML systems to function as expected.

The need for training data in ai and ml models

Not very long ago, sometime towards the end of the first decade of the 21st century, internet users everywhere around the world began seeing fidelity tests while logging onto websites. You were shown an image of a text, with one word or usually two, and you had to type the words correctly to be able to proceed further. This was their way of identifying that you were, in fact, human, and not a line of code trying to worm its way through to extract sensitive information from said website. While it was true, this wasn’t the whole story.

Turns out, only one of the two Captcha words shown to you were part of the test, and the other was an image of a word taken from an as yet non-transcribed book. And you, along with millions of unsuspecting users worldwide, contributed to the digitization of the entire Google Books archive by 2011. Another use case of such an endeavor was to train AI in Optical Character Recognition (OCR), the result of which is today’s Google Lens, besides other products.

Do you really need millions of users to build an AI? How exactly was all this transcribed data used to make a machine understand paragraphs, lines, and individual words? And what about companies that are not as big as Google – can they dream of building their own smart bot? This article will answer all these questions by explaining the role of datasets in artificial intelligence and machine learning.

ML and AI – smart tools to build smarter computers

In our efforts to make computers intelligent – teach them to find answers to problems without being explicitly programmed for every single need – we had to learn new computational techniques. They were already well endowed with multiple superhuman abilities: computers were superior calculators, so we taught them how to do math; we taught them language, and they were able to spell and even say “dog”; they were huge reservoirs of memory, hence we used them to store gigabytes of documents, pictures, and video; we created GPUs and they let us manipulate visual graphics in games and movies. What we wanted now was for the computer to help us spot a dog in a picture full of animals, go through its memory to identify and label the particular breed among thousands of possibilities, and finally morph the dog to give it the head of a lion that I captured on my last safari. This isn’t an exaggerated reality – FaceApp today shows you an older version of yourself by going through more or less the same steps.

For this, we needed to develop better programs that would let them learn how to find answers and not just be glorified calculators – the beginning of artificial intelligence. This need gave rise to several models in Machine Learning, which can be understood as tools that enhanced computers into thinking systems (loosely).

Machine Learning Models

Machine Learning is a field which explores the development of algorithms that can learn from data and then use that learning to predict outcomes. There are primarily three categories that ML models are divided into:

Supervised Learning

These algorithms are provided data as example inputs and desired outputs. The goal is to generate a function that maps the inputs to outputs with the most optimal settings that result in the highest accuracy.

Unsupervised Learning

There are no desired outputs. The model is programmed to identify its own structure in the given input data.

Reinforcement Learning

The algorithm is given a goal or target condition to meet and it is left to its devices to learn by trial and error. It uses past results to inform itself about both optimal and detrimental paths and charts the best path to the desired endgame result.

In each of these philosophies, the algorithm is designed for a generic learning process and exposed to data or a problem. In essence, the written program only teaches a wholesome approach to the problem and the algorithm learns the best way to solve it.

Based on the kind of problem-solving approach, we have the following major machine learning models being used today:

  • Regression
    These are statistical models applicable to numeric data to find out a relationship between the given input and desired output. They fall under supervised machine learning. The model tries to find coefficients that best fit the relationship between the two varying conditions. Success is defined by having as little noise and redundancy in the output as possible.

    Examples: Linear regression, polynomial regression, etc.
  • Classification
    These models predict or explain one outcome among a few possible class values. They are another type of supervised ML model. Essentially, they classify the given data as belonging to one type or ending up as one output.

    Examples: Logistic regression, decision trees, random forests, etc.
  • Decision Trees and Random Forests
    A decision tree is based on numerous binary nodes with a Yes/No decision marker at each. Random forests are made of decision trees, where accurate outputs are obtained by processing multiple decision trees and results combined.
  • Naïve Bayes Classifiers
    These are a family of probabilistic classifiers that use Bayes’ theorem in the decision rule. The input features are assumed to be independent, hence the name naïve. The model is highly scalable and competitive when compared to advanced models.
  • Clustering
    Clustering models are a part of unsupervised machine learning. They are not given any desired output but identify clusters or groups based on shared characteristics. Usually, the output is verified using visualizations.

    Examples: K-means, DBSCAN, mean shift clustering, etc.
  • Dimensionality Reduction
    In these models, the algorithm identifies the least important data from the given set. Based on the required output criteria, some information is labeled redundant or unimportant for the desired analysis. For huge datasets, this is an invaluable ability to have a manageable analysis size.

    Examples: Principal component analysis, t-stochastic neighbor embedding, etc.
  • Neural Networks and Deep Learning
    One of the most widely used models in AI and ML today, neural networks are designed to capture numerous patterns in the input dataset. This is achieved by imitating the neural structure of the human brain, with each node representing a neuron. Every node is given activation functions with weights that determine its interaction with its neighbors and adjusted with each calculation. The model has an input layer, hidden layers with neurons, and an output layer. It is called deep learning when many hidden layers are encapsulating a wide variety of architectures that can be implemented. ML using deep neural networks requires a lot of data and high computational power. The results are without a doubt the most accurate, and they have been very successful in processing images, language, audio, and videos.

There is no single ML model that offers solutions to all AI requirements. Each problem has its own distinct challenges, and knowledge of the workings behind each model is mandatory to be able to use them efficiently. For example, regression models are best suited for forecasting data and for risk assessment. Clustering modes in handwriting recognition and image recognition, decision trees to understand patterns and identify disease trends, naïve Bayes classifier for sentiment analysis, ranking websites and documents, deep neural networks models in computer vision, natural language processing, and financial markets, etc. are more such use cases.

The need for training data in ML models

Any machine learning model that we choose needs data to train its algorithm on. Without training data, all the algorithm understands is how to approach the given problem, and without proper calibration, so to speak, the results won’t be accurate enough. Before training, the model is just a theorist, without the fine-tuning to its settings necessary to start working as a usable tool.

While using datasets to teach the model, training data needs to be of a large size and high quality. All of AI’s learning happens only through this data. So it makes sense to have as big a dataset as is required to include variety, subtlety, and nuance that makes the model viable for practical use. Simple models designed to solve straight-forward problems might not require a humongous dataset, but most deep learning algorithms have their architecture coded to facilitate a deep simulation of real-world features.

The other major factor to consider while building or using training data is the quality of labeling or annotation. If you’re trying to teach a bot to speak the human language or write in it, it’s not just enough to have millions of lines of dialogue or script. What really makes the difference is readability, accurate meaning, effective use of language, recall, etc. Similarly, if you are building a system to identify emotion from facial images, the training data needs to have high accuracy in labeling corners of eyes and eyebrows, edges of the mouth, the tip of the nose and textures for facial muscles. High-quality training data also makes it faster to train your model accurately. Required volumes can be significantly reduced, saving time, effort (more on this shortly) and money.

Datasets are also used to test the results of training. Model predictions are compared to testing data values to determine the accuracy achieved until then. Datasets are quite central to building AI – your model is only as good as the quality of your training data.

How to build datasets?

With heavy requirements in quantity and quality, it is clear that getting your hands on reliable datasets is not an easy task. You need bespoke datasets that match your exact requirements. The best training data is tailored for the complexity of the ask as opposed to being the best-fit choice from a list of options. Being able to build a completely adaptive and curated dataset is invaluable for businesses developing artificial intelligence.

On the contrary, having a repository of several generic datasets is more beneficial for a business selling training data. There are also plenty of open-source datasets available online for different categories of training data. MNIST, ImageNet, CIFAR provide images. For text datasets, one can use WordNet, WikiText, Yelp Open Dataset, etc. Datasets for facial images, videos, sentiment analysis, graphs and networks, speech, music, and even government stats are all easily found on the web.

Another option to build datasets is to scrape websites. For example, one can take customer reviews off e-commerce websites to train classification models for sentiment analysis use cases. Images can be downloaded en masse as well. Such data needs further processing before it can be used to train ML models. You will have to clean this data to remove duplicates, or to identify unrelated or poor-quality data.

Irrespective of the method of procurement, a vigilant developer is always likely to place their bets on something personalized for their product that can address specific needs. The most ideal solutions are those that are painstakingly built from scratch with high levels of precision and accuracy with the ability to scale. The last bit cannot be underestimated – AI and ML have an equally important volume side to their success conditions.

Coming back to Google, what are they doing lately with their ingenious crowd-sourcing model? We don’t see a lot of captcha text anymore. As fidelity tests, web users are now annotating images to identify patterns and symbols. All the traffic lights, trucks, buses and road crossings that you mark today are innocuously building training data to develop their latest tech for self-driving cars. The question is, what’s next for AI and how can we leverage human effort that is central to realizing machine intelligence through training datasets?

7 Best Practices For Creating Training Data

The success of any AI or ML model is determined by the quality of the data used. A sophisticated model using a bad dataset would eventually fail to function the way it was expected to. With such models continually learning from the data provided, it’s necessary to build datasets that can help these model achieve their objectives. 

If you’re still unsure what training datasets are and why are they important to the success of your system. Here’s a quick read to get you up to speed with training data and building high-quality training sets.

While building a dataset sounds like a mundane and tedious task, it determines the success or failure of the model being built. To help you look past the dreadful hours spent on collecting, tagging, and labeling data, here are 7 things to follow when making training datasets. 

Avoid Target Leakage

When building training data for AI/ML models, it’s necessary to avoid any target leakage or data leakage. The issue of data leakage arises when the model is trained on parameters that might not be available during real-time prediction. Since the system already knows all possible outcomes, the output would be unrealistically accurate during training. 

Since data leakage causes the model to overrepresent its generalization error, making it useless for real-world applications. It’s necessary to remove any data from the training set that might not be known during real-time prediction to avoid target leakage issue. Furthermore, to mitigate the risks of data leakage, its necessary to involve business analysts and professionals with the domain expertise to be involved in all aspects of data science projects from problem specifications to data collection to deployment.  

Avoid Training-Serving Skew In Training Sets

Training-serving skew problem arises when the performance during training is different from the performance during serving. The most common reasons for this issue to arise are the discrepancy in how data is handled in training compared to serving, change in data between training and serving. And, the feedback loop between the model and algorithm. 

Exposing a model to training-serving skew can negatively impact the model’s performance, and the model might not function the way it’s expected to. One way to ensure you avoid training-serving skew is by measuring the skew. You can do this by, measuring the difference the performance on training data and the holdout data, the difference between holdout data and ‘next-day’ data, and the difference in performance between ‘next-day’ data and live data.

Make Information Explicit Where Needed 

As mentioned earlier, when working on data science projects, it’s important to involve business analysts and professionals of the domain to be part of the projects. Machine learning algorithms use a set of input data to create an output. This input data is called features, structured in the form of columns. 

Domain professionals can help in feature engineering, i.e., understanding those features that can make the model work. This helps in two primary ways, preparing proper input datasets compatible with the algorithm used and improving the accuracy of the model over time.

Avoid Biased Data When Building Training Sets

When building a training dataset for your AI/ML model, it’s important to make sure the training data is a representation of the entire universe of data. And, not biased towards a set of inputs. 

For example, an e-commerce website that ships products globally wants to use a chatbot to help its users shop better and faster. In such a scenario, if the training data is built only using exchanges/queries from customers of only one region. The system might throw exceptions when a customer from any other region interacts with the bot, given the nuances of language. So, to make sure the system is free of bias, the training data should contain exchanges of all kind of users the e-commerce shop caters to. 

Ensure Data Quality Is Maintained In Training Data 

As stated earlier, the quality of your training data is an essential factor in determining the accuracy and success of AI/ML models. A training dataset that’s filled with bias, and features not available in real-world scenarios would result in the model showing outputs that are far from ground-truths. 

We at Bridged.co have employed two ways of ensuring every dataset we deliver is of the highest quality – consensus approach, and sample review. These approaches make sure that the models trained using these datasets produce results as close to ground-realities as possible. 

Use Enough Training Data

It just isn’t enough to have good-quality data. The dataset you use to train your model must cover all possible variations of the features chosen to train the system. Failing to do so can cause the system function abnormally and produce inaccurate results.

The more features you use to train your model more the data that will be needed to sufficiently train the system. While there is no ‘one size fits all’ when deciding the size of training data. A good rule of thumb for classification models is to have at least 10 times the number of data as you have features, and for regression models, 50 times the number of data as you have features.

Set Up An In-house Workforce or Get A Fully-managed Training Data Solution Provider

Building a dataset is no overnight task. It’s a long tedious process that stretches on for weeks if not months. 

It would be ideal to have an ops team in-house whom you can train, monitor, and ensure the highest quality is maintained. However, it isn’t a scalable solution. 

You can also check out training data solution providers, such as ourselves, to help you with all your training data requirements. A fully-managed solution provider doesn’t just provide you with quality control but also ensure your requirements can be met even if at scale. 


It’s a no brainer that a good quality training dataset is fundamental to the success of your AI/ML systems. These important tips are bound to make sure the training data you build is of the highest quality and helps your system produce accurate results. 

Understanding training data and how to build high-quality training data for ai/ml models

We are living in one of the most exciting times, where faster processing power and new technological advancements in AI and ML are transcending the ways of the past. From conversational bots helping customers make purchases online to self-driving cars adding a new dimension of comfort and safety for commuters. While these technologies continue to grow and transform lives, what makes them so powerful is data.

Tons and tons of data.

Machine Learning systems, as the name suggests, are systems that are constantly learning from the data being consumed to produce accurate results.

If the right data is used, the system designed can find relations between entities, detect patterns, and make decisions. However, not all data or datasets used to build such models are treated equally.

Data for AI & ML models can be essentially classified into 5 categories: training dataset, testing dataset, validation dataset, holdout dataset, and cross-validation dataset. For the purpose of this article, we’ll only be looking at training dataset and cover the following topics.

What Is Training Data

Training data also called training dataset or training set or learning set, is foundational to the way AI & ML technologies work. Training data can be defined as the initial set of data used to help AI & ML models understand how to apply technologies such as neural networks to learn and produce accurate results.

Training sets are materials through which an AI or ML models learn how to process information and produce the desired output. Machine learning uses neural network algorithms that mimic the abilities of the human brain to take in diverse inputs and weigh them, to produce neural activations, in individual neurons. These provide a highly detailed model of how human thought process works.

Given the diverse types of systems available, training datasets are structured in a different way for different models. For conversational bots, the training set contains the raw text that gets classified and manipulated.

On the other hand, for convolution models using image processing and computer vision, the training set consists of a large volume of images. Given the complexity and sophistication of these models, it uses iterative training on each image to eventually understand the patterns, shapes, and subjects in a given image.

In a nutshell, training sets are labeled and organized data needed to train AI and ML models.

Why Are Training Datasets Important

When building training sets for AI & ML models, one needs huge amounts of relevant data to help these models make the most optimal decision. Machine learning allows computer systems to tackle very complex problems and deal with inherent variations of hundreds and thousands or millions of variables.

The success of such models is highly reliant on the quality of the training set used. A training set that accounts for all variations of the variables in the real world would result in developing more accurate models. Just like in the case of a company collecting survey data to know about their consumer, larger the sample size for the survey is, more accurate the conclusion will be.

If the training set isn’t large enough, the resultant system won’t be able to capture all variations of the input variables resulting in inaccurate conclusions.

While AI & ML models need huge amounts of data, they also need the right kind of data, as the system learns from this set of data. Having a sophisticated algorithm for AI & ML models isn’t enough when the data used to train these systems are bad or faulty. Training a system on a poor dataset or a dataset that contains wrong data, the system will end up learning wrong lessons, and generate wrong results. And eventually, not work the way it is expected to. On the contrary, a basic algorithm using a high-quality dataset will be able to produce accurate results and function as expected.

For example, in the case of a speech recognition system. The system can be made on a mathematical model to train the system on textbook English. However, this system is bound to show inaccurate results.

When we talk about language, there is a massive difference between textbook English and how people actually speak. To this add the factors – such as voice, dialects, age, gender – varying among speakers. This system would struggle to handle any cases or conversations that stray from the textbook English used to train it. For inputs having loose English or a different accent or use of slang, the system would fail to function for the purpose it was created.

Also, in a case, such a system is used to comprehend a text chat or email it would throw unexpected results. As a system trained in textbook English would fail to account for abbreviations and emojis used, which are commonly used among people in everyday conversations.

So, to build an accurate AI or ML model, it’s essential to build a comprehensive and high-quality training dataset. To help these systems learn the right lessons and formulate the right responses. While it’s a substantial task to generate such a high volume of data, it is necessary to do so.

How To Build A Training Dataset

Now, that we have understood why training data are integral to the success of an AI or ML model, it’s necessary to know how to build a training dataset.

The process of building a training dataset can be classified into 3 simple steps: data collection, data preprocessing, and data conversion. Let’s take a look at each of these steps and how it helps in building a high-quality training set.

Data Collection

The first step in making a training set is choosing the right number of features for a particular dataset. The data should be consistent and have the least amount of missing values. In case a feature has 25% to 30% of missing values, then this feature should not be considered to be part of the training set.

However, there might be instances when such features might be closely related to another feature. In such a case, it’s advisable to impute and handle the missing values correctly to achieve desired results. At the end of the data collection step, you should clearly know how to handle preprocessing data.

Data Preprocessing

Once the data has been collected, we enter the data preprocessing stage. In this step, we collect the right data from the complete data set and build a training set. The steps to be followed here are:

  • Organize and Format: If the data is scattered across multiple files or sheets, it’s necessary to compile all this data to form a single dataset. This includes finding the relation between these datasets and preprocess to form a dataset of required dimensions.
  • Data Cleaning: Once all the scattered data is compiled to a single dataset, it’s important to handle the missing values. And, remove any unwanted characters from the dataset.
  • Feature extraction: The final step in the data preprocessing step deals with finalizing the right number of features required for the training set. One has to analyze and find out features that are absolutely important for the model to function accurately and select them for faster computations and low memory consumption.

Data Conversion

The data conversion stage consists of the following steps,

  • Scaling: Once the data is placed, it’s necessary to scale the data as per a definite value. For example, a bank application containing transaction amount being important, then it’s required to scale the data on transaction value to build a robust model.
  • Disintegration and composition: There might be certain features in the training data that can be better understood by the model when split. For example, time-series function, where days, month, year, hour, minutes, and seconds can be split for better processing.
  • Composition: While some features can be better utilized when disintegrated, other features can be better understood when combined with another.

This covers the necessary steps to be taken to build a high-quality training set for AI & ML models. While this might help you formulate a framework that helps you build training sets for your system, here’s how you can put these frameworks into action.

Dedicated In-house Team

One of the easiest way for you could be to hire an intern to help you with the task of collecting and preprocessing data. You can also set up a dedicated ops team to help with your training set requirements. While this method provides you with greater control over the quality, it isn’t scalable, and you’ll be forced to look for more efficient methods eventually.

Outsource Training Set Creation

If having an in-house team doesn’t cut it, it would be a smarter move to outsource it, right? Well, not entirely.

Outsourcing your training set creation has its own set of troubles. Right from training people to ensuring quality is maintained to making sure people aren’t cutting slack.

Training Data Solutions Providers

With AI & ML technologies continuing to grow and more companies joining the bandwagon to roll out AI-enabled tools. There are a plethora of companies that can help you with your AI/ML training dataset requirement. We at Bridged.co have served prominent enterprises delivering over 50 million datasets.

And that is everything you need to know about training data, and how to go about creating one that helps you build powerful, robust, and accurate systems.

How is big data generated

Why big data analytics is indispensable for today’s businesses.

Ours is the age of information technology. Progress in IT has been exponential in the 21st century, and one direct consequence is the amount of data generated, consumed, and transferred. There’s no denying that the next step in our technological advancement involves real-life implementations of artificial intelligence technology.

In fact, one could say we are already in the midst of it. And there’s a definitive link between the large amounts of digital information being produced — called Big Data when it exceeds the processing capabilities of traditional database tools — and how new machine learning techniques use that data to assist the development of AI.

However, this isn’t the only application of Big Data even if it has become the most promising. Big data analytics is now a heavily researched field which helps businesses uncover ground-breaking insights from the available data to make better and informed decisions. According to IDC, big data and analytics had market revenue of more than $150 billion worldwide in 2018.

What is the scale of data that we are dealing with today?

  • ·It is estimated that there will be 10 billion mobile devices in use by 2020. This is more than the entire world population, and this is not including laptops and desktops.
  • We make over 1 billion Google searches every day.
  • Around 300 billion emails are sent every day.
  • More than 230 million tweets are written every day.
  • More than 30 petabytes (that’s 1015 bytes) of user-generated data is stored, accessed and analyzed on Facebook.
  • On YouTube alone, 300 hours of video are uploaded every minute.
  • In just 5 years, the number of connected smart devices in the world will be more than 50 billion — all of which will collect, create, and share data.
Social media platforms have shot up human-generated data exponentially.

As an aside, in an attempt to impress the potential here, let me state that we analyze less than 1% of all available data. The numbers are staggering!

Before we get to classifying all this data, let us understand the three main characteristics of what makes big data big.

The 3 Vs of Big Data

3 Vs of Big Data
Image Credit: workology

Volume

Volume refers to the amount of data generated through various sources. On social media sites, for example, we have 2 billion Facebook users, 1 billion on YouTube, and 1 billion together on Instagram and Twitter. The massive quantities of data contributed by all these users in terms of images, videos, messages, posts, tweets, etc. have pushed data analysis away from the now incapable excel sheets, databases, and other traditional tools toward big data analytics.

Velocity

This is the speed at which data is being made available — the rate of transfer over servers and between users has increased to a point where it is impossible to control the information explosion. There is a need to address this with more equipped tools, and this comes under the realm of big data.

Variety

There are structured and unstructured data in all the content being generated. Pictures, videos, emails, tweets, posts, messages, etc. are unstructured. Sensor-collected data from the millions of connected devices is what you can call semi-structured while records maintained by businesses for transactions, storage, and analyzed unstructured information are part of structured data.

Classification of Big Data

With the amount of information that is available to us today, it is important to classify and understand the nature of different kinds of data and the requirements that go into the analysis for each.

Human Generated Data

Most human-generated data is unstructured. But this data has the potential to provide deep insights for heavy user-optimization. Product companies, customer service organizations, even political campaigns these days rely heavily on this type of random data to inform themselves of their audience and to target their marketing approach accordingly.

Classification of Big Data
Image Credit: EMC

Machine Generated Data

Data created by various sensors, cameras, satellites, bio-informatic and health-care devices, audio and video analyzers, etc. combine to become the biggest source of data today. These can be extremely personalized in nature, or completely random. With the advent of internet-enabled smart devices, propagation of this data has become constant and omnipresent, providing user information with highly useful detail.

Data from Companies and Institutions

Records of finances, transactions, operations planning, demographic information, health-care records, etc. stored in relational databases are more structured and easily readable compared to disorganized online data. This data can be used to understand key performance indicators, estimate demands and shortage, prevalent factors, large-scale consumer mentality, and a lot more. This is the smallest portion of the data market but combined with consumer-centric analysis of unstructured data, can become a very powerful tool for businesses.

What we can do for you

Whether one is seeking a profit advantage or a market edge, carving a niche product or capturing crowd sentiment, developing self-driving cars or facial recognition apps, building a futuristic robot or a military drone, big data is available for all sectors to take their technology to the next level. Bridged is a place where such fruitful experiments in data are being utilized and we are endeavoring to provide assistance to companies who are willing to take advantage of this untapped but currently mandatory investment in big data.

The need for quality training data | Blog | Bridged.o

What is training data? Where to find it? And how much do you need?

Artificial Intelligence is created primarily from exposure and experience. In order to teach a computer system a certain thought-action process for executing a task, it is fed a large amount of relevant data which, simply put, is a collection of correct examples of the desired process and result. This data is called Training Data, and the entire exercise is part of Machine Learning.

Artificial Intelligence tasks are more than just computing and storage or doing them faster and more efficiently. We said thought-action process because that is precisely what the computer is trying to learn: given basic parameters and objectives, it can understand rules, establish relationships, detect patterns, evaluate consequences, and identify the best course of action. But the success of the AI model depends on the quality, accuracy, and quantity of the training data that it feeds on.

The training data itself needs to be tailored for the end-result desired. This is where Bridged excels in delivering the best training data. Not only do we provide highly accurate datasets, but we also curate it as per the requirements of the project.

Below are a few examples of training data labeling that we provide to train different types of machine learning models:

2D/3D Bounding Boxes

2D/3D bounding boxed | Blog | Bridged.co

Drawing rectangles or cuboids around objects in an image and labeling them to different classes.

Point Annotation

Point annotation | Blog | Bridged.co

Marking points of interest in an object to define its identifiable features.

Line Annotation

Line annotation | Blog | Bridged.co

Drawing lines over objects and assigning a class to them.

Polygonal Annotation

Polygonal annotation | Blog | Bridged.co

Drawing polygonal boundaries around objects and class-labeling them accordingly.

Semantic Segmentation

Semantic segmentation | Blog | Bridged.co

Labeling images at a pixel level for a greater understanding and classification of objects.

Video Annotation

Video annotation | Blog | Bridged.co

Object tracking through multiple frames to estimate both spatial and temporal quantities.

Chatbot Training

Chatbot training | Blog | Bridged.co

Building conversation sets, labeling different parts of speech, tone and syntax analysis.

Sentiment Analysis

Sentiment analysis | Blog | Bridged.co

Label user content to understand brand sentiment: positive, negative, neutral and the reasons why.

Data Management

Cleaning, structuring, and enriching data for increased efficiency in processing.

Image Tagging

Image tagging | Blog | Bridged.co

Identify scenes and emotions. Understand apparel and colours.

Content Moderation

Content moderation | Blog | Bridged.co

Label text, images, and videos to evaluate permissible and inappropriate material.

E-commerce Recommendations

Optimise product recommendations for up-sell and cross-sell.

Optical Character Recognition

Learn to convert text from images into machine-readable data.


How much training data does an AI model need?

The amount of training data one needs depends on several factors — the task you are trying to perform, the performance you want to achieve, the input features you have, the noise in the training data, the noise in your extracted features, the complexity of your model and so on. Although, as an unspoken rule, machine learning enthusiasts understand that larger the dataset, more fine-tuned the AI model will turn out to be.

Validation and Testing

After the model is fit using training data, it goes through evaluation steps to achieve the required accuracy.

Validation & testing of models | Blog | Bridged.co

Validation Dataset

This is the sample of data that is used to provide an unbiased evaluation of the model fit on the training dataset while tuning model hyper-parameters. The evaluation becomes more biased when the validation dataset is incorporated into the model configuration.

Test Dataset

In order to test the performance of models, they need to be challenged frequently. The test dataset provides an unbiased evaluation of the final model. The data in the test dataset is never used during training.

Importance of choosing the right training datasets

Considering the success or failure of the AI algorithm depends so much on the training data it learns from, building a quality dataset is of paramount importance. While there are public platforms for different sorts of training data, it is not prudent to use them for more than just generic purposes. With curated and carefully constructed training data, the likes of which are provided by Bridged, machine learning models can quickly and accurately scale toward their desired goals.

Reach out to us at www.bridgedai.com to build quality data catering to your unique requirements.


Computer vision and image annotation | Blog | Bridged

Understanding the Machine Learning technology that is propelling the future

Any computing system fundamentally works on the basic concepts of input and output. Whether it is a rudimentary calculator, our all-requirements-met smartphone, a NASA supercomputer predicting the effects of events occurring thousands of light-years away, or a robot-like J.A.R.V.I.S. helping us defend the planet, it’s always a response to a stimulus — much like how we humans operate — and the algorithms which we create teach the process for the same. The specifications of the processing tools determine how accurate, quick, and advanced the output information can be.

Computer Vision is the process of computer systems and robots responding to visual inputs — most commonly images and videos. To put it in a very simple manner, computer vision advances the input (output) steps by reading (reporting) information at the same visual level as a person and therefore removing the need for translation into machine language (vice versa). Naturally, computer vision techniques have the potential for a higher level of understanding and application in the human world.

While computer vision techniques have been around since the 1960s, it wasn’t till recently that they picked up the pace to become very powerful tools. Advancements in Machine Learning, as well as increasingly capable storage and computational tools, have enabled the rise in the stock of Computer Vision methods.

What follows is also an explanation of how Artificial Intelligence is born.

Understanding Images

Machines interpret images as a collection of individual pixels, with each colored pixel being a combination of three different numbers. The total number of pixels is called the image resolution, and higher resolutions become bigger sizes (storage size). Any algorithm which tries to process images needs to be capable of crunching large numbers, which is why the progress in this field is tangential to advancement in computational ability.

Understanding images | Blog | Bridged.co

The building blocks of Computer Vision are the following two:

Object Detection

Object Identification

As is evident from the names, they stand for figuring out distinct objects in images (Detection) and recognizing objects with specific names (Identification).

These techniques are implemented through several methods, with algorithms of increasing complexity providing increasingly advanced results.

Training Data

The previous section explains the architecture behind a computer’s understanding of images. Before a computer can perform the required output function, it is trained to predict such results based on data that is known to be relevant and at the same time accurate — this is called Training Data. An algorithm is a set of guidelines that defines the process by which a computer achieves the output — the closer the output is to the expected result, the better the algorithm. This training forms what is called Machine Learning.

This article is not going to delve into the details of Machine Learning (or Deep Learning, Neural Networks, etc.) algorithms and tools — basically, they are the programming techniques that work through the Training Data. Rather, we will proceed now to elaborate on the tools that are used to prepare the Training Data required for such an algorithm to feed on — this is where Bridged’s expertise comes into the picture.

Image Annotation

For a computer to understand images, the training data needs to be labeled and presented in a language that the computer would eventually learn and implement by itself — thus becoming artificially intelligent.

The labeling methods used to generate usable training data are called Annotation techniques, or for Computer Vision, Image Annotation. Each of these methods uses a different type of labeling, usable for various end-goals.

At Bridged AI, as reliable players for artificial intelligence and machine learning training data, we offer a range of image annotation services, few of which are listed below:

2D/3D Bounding Boxes

2D and 3d bounding boxes | Blog | Bridged.co

Drawing rectangles or cuboids around objects in an image and labeling them to different classes.

Point Annotation

Point annotation | Blog | Bridged.co

Marking points of interest in an object to define its identifiable features.

Line Annotation

Line annotation | Blog | Bridged.co

Drawing lines over objects and assigning a class to them.

Polygonal Annotation

Polygonal annotation | Blog | Bridged.co

Drawing polygonal boundaries around objects and class-labeling them accordingly.

Semantic Segmentation

Semantic segmentation | blog | Bridged.co

Labeling images at a pixel level for a greater understanding and classification of objects.

Video Annotation

Video annotation | blog | Bridged.co

Object tracking through multiple frames to estimate both spatial and temporal quantities.

Applications of Computer Vision

It would not be an exaggeration to say computer vision is driving modern technology like no other. It finds application in very many fields — from assisting cameras, recognizing landscapes, and enhancing picture quality to use-cases as diverse and distinct as self-driving cars, autonomous robotics, virtual reality, surveillance, finance, and health industries — and they are increasing by the day.

Facial Recognition

Facial recognition | Blog | Bridged.co

Computer Vision helps you detect faces, identify faces by name, understand emotion, recognize complexion and that’s not the end of it.

The use of this powerful tool is not limited to just fancying photos. You can implement it to quickly sift through customer databases, or even for surveillance and security by identifying fraudsters.

Self-driving Cars

Self-driving cars | Blog | Bridged.co

Computer Vision is the fundamental technology behind developing autonomous vehicles. Most leading car manufacturers in the world are reaping the benefits of investing in artificial intelligence for developing on-road versions of hands-free technology.

Augmented & Virtual Reality

Augmented and virtual reality | Blog | Bridged.co

Again, Computer Vision is central to creating limitless fantasy worlds within physical boundaries and augmenting our senses.

Optical Character Recognition

An AI system can be trained through Computer Vision to identify and read text from images and images of documents and use it for faster processing, filtering, and on-boarding.

Artificial Intelligence is the leading technology of the 21st century. While doomsday conspirators cry themselves hoarse about the potential destruction of the human race at the hands of AI robots, Bridged.co firmly believes that the various applications of AI that we see around us today are just like any other technological advancement, only better. Artificial Intelligence has only helped us in improving the quality of life while achieving unprecedented levels of automation and leaving us amazed at our own achievements at the same time. The Computer Vision mission has only just begun.