Author: Tarun Adnani

Home / Author: Tarun Adnani

8 industries artificial intelligence is transforming

Man-made reasoning popularly known as Artificial Intelligence depicts the propelled procedure for a machine to settle on choices dependent on the rationale. Computer-based intelligence has effectively had a worldwide effect on the making of conversational chatbots, self-driving vehicles, and proposal frameworks. Artificial intelligence is developing in its notoriety among business pioneers as a rising advantage for the workforce and is by and by finding in different ventures as of now, changing how organizations and social orders work.

The use of Artificial Intelligence is on the rise and every industry seems to want a piece of it. Over the past couple of years, Artificial Intelligence and Machine Learning are being rigorously used to improve business processes and everyday new technology is being researched or developed to handle more and more complex processes.

A good number of industries have already started using Artificial Intelligence and Machine Learning in their businesses and have been able to take advantage of them to massively improve processes within the organization. Let’s have a quick look at some of the industries Artificial Intelligence is taking over and in what ways below.

Healthcare

With the whole world becoming health-conscious, this is an industry that has humongous potential.

Artificial intelligence is on the ascent inside the medicinal services industry, taking care of an assortment of issues, setting aside cash and clearing new streets to a more extensive comprehension of wellbeing sciences. AI innovations in the health insurance industry are for the most part used to productively gather singular patient information. AI has helped anesthesia conveyance and expert AI support during medicinal techniques. As per Health IT Analytics, progressive changes have been taking place in the wellness and health insurance sector with the utilization of AI-based wellbeing and medical services or devices.

Computer Vision backed by Artificial Intelligence has been very successful in analyzing data to determine diseases. With NLP and ML leading the space to study the demographics and identify health issues in that population.

Surgeries can now be made using AI-assisted bots that are more accurate and help by lowering the risk of infections, help with reducing the blood loss during surgeries and also shorten the healing time.

Finance

Artificial Intelligence and Machine learning are taking over the Finance industry by storm. It’s now been noticed that AI and ML have been able to surpass humans in a lot of important processes, from gathering financial data, analysis of this data and managing investments. Finance has been using Artificial Intelligence coupled with predictive analytics to track the changes in the stock market and identify potential investment opportunities.

Most of the leading financial institutions have also started incorporating chatbots that are very well developed specifically for the finance industry using very refined training data. JPMorgan Chase is now using AI in the form of an image recognition software with character recognition to scan and extract specific information from a huge set legal documents in just a few seconds, which would practically take months for humans to do it.

Transport

Transport is another industry where Artificial Intelligence is taking over drastically. Self-driven cars and self-driven trucks are the more popular developments in this industry but there are a lot of significant developments that have been happening in the industry in terms of incorporating Artificial Intelligence and Machine Learning.

Figuring out the best routes in terms of distance and fuel efficiency has been one of the most trusted processes for Artificial Intelligence. The Transport industry is benefitted the most by using Artificial Intelligence to gather information from an assortment of sources to streamline and alter the delivery courses and improve distribution systems.

Extensive research and development have been going on to develop self-driven cargo ships which can determine the safest and shortest route based on weather and obstructions on the way. New AI technology is being developed that can detect any type of malfunctions and hence reduce marine accidents.

Business Intelligence

Business Intelligence is an industry that is on the boom currently. The volume of data that is generated from clients is extremely valuable and Artificial Intelligence applications have been able to better analyze this data and give better insights. It has been very precise in exploring the data and giving out more refined recommendations. It is also automated which reduces the human effort significantly.

Humans no longer need to go through various charts and dashboards to speculate the important parameters, the AI integrated tools do it much more effectively and deliver more accurate results.

Artificial Intelligence has revolutionized the way we work with data. With the main goal of Business Intelligence is getting the right data to the point where a decision can be made in the shortest time possible. The demand for such AI or ML applications is increasing exponentially with new emerging requirements and data being generated.

Human Resources

Utilization of Artificial Intelligence and Machine learning in recruitment and human resources has increased substantially over the past couple of years because it decreases human effort while making the whole process more streamlined.

Blind contracting

Blind contracting is a procedure for choosing applicants without seeing them. ML calculations can analyze candidate information under determined pursuit parameters that are exclusively dependent on experience and accreditations as opposed to statistical data. This can help groups more diverse regarding abilities, instruction foundation, sexual orientation, ethnicity, and unique attributes that potential applicants bring to the table.

Retail/E-Commerce

E-Commerce is one of the biggest industries that has taken advantage of Artificial Intelligence and Machine Learning to streamline complicated processes. From analyzing online traffic, predicting accurate suggestions and optimizing the delivery process to analyzing competitor data and producing critical decision-making outputs, AI has been a harpoon to this industry.

Artificial intelligence can customize buying suggestions for clients while helping retailers to enhance valuing and rebate techniques by interest gauging.

With most of the big players in the industry even focusing on developing a user-friendly chatbot to assist consumers with picking the right product, the experience has been revolutionized. The chatbots are now capable of analyzing what product would interest the consumer and accurately suggest them which has skyrocketed sales. With the scope of further implementation of AI and ML across various processes, E-Commerce can be considered one of the biggest industries that Artificial Intelligence has taken over.

Agriculture

Agriculture is another industry where Computer Vision backed by Artificial Intelligence has changed the game. Large agricultural lands are now captured by drones and using computer vision the exact areas where weeds grow can be predicted. This has been a revolutionary step in the field of agriculture as the efficiency can be increased monstrously. This also eliminates the human effort of manually detecting key areas of the agricultural land. The data is reliable, efficient and economical.

This helps in identifying the problematic areas and also help in getting rid of the weeds and hence maximize the output.

Advertising

Businesses would normally spend thousands of dollars to run test ads to figure out the target audience. But AI-powered campaigns can provide better results with the existing data itself thereby reducing costs by more than half. This would be a game-changer in the marketing realm as brands and businesses would have a sure shot avenue to place their money in. Connecting with potential clients, creating leads and changing over them to deals, distinguishing the piece of the overall industry of another item before dispatch and rivalry research could all end up simpler with brilliant nostalgic investigation instruments.

What to expect in the next decade?

Cyborgs

In the future, we will probably expand ourselves with PCs and upgrade our very own large number of normal capacities. Although a considerable lot of these conceivable cyborg upgrades would be included for comfort, others may fill a progressively useful need. Computer-based intelligence will wind up valuable for individuals with severed appendages, as the mind will almost certainly speak with a mechanical appendage to give the patient more control. This sort of cyborg innovation would fundamentally decrease the impediments that amputees manage.

Industries being transformed with the rise of AI systems, Artificial Intelligence can take up dangerous jobs, they are in fact rambles, being utilized as the physical partner for defusing bombs, however requiring a human to control them, as opposed to utilizing AI. Whatever their order, they have spared a great many lives by assuming control more than one of the most hazardous employments on the planet. Welding is another good example of producing toxic substances, intense heat, and earsplitting noise, which could be outsourced to robots in most cases. Robot Worx explains that robotic welding cells are already in use and have safety features in place to help prevent human workers from fumes and other bodily harm.

Artificial Intelligence has not yet been developed perfectly to make robots that are capable of understanding emotions. But it is an area where a lot of pioneers are focusing on developing currently.

Most robots are as yet aloof and it’s difficult to picture a robot you could identify with. In any case, an organization in Japan has made the primary huge strides toward a robot friend—one who can comprehend and feel feelings. Soon, we will have robot friends who can understand our emotions and can relate to it. They can act as therapists providing mental therapy.

Further advancements will take place in all currently existing AI technologies the future will have more robust AI and ML applications that can be deeply personalized to suit every individual’s choices. The future of AI is exciting and promising. We can safely conclude saying AI and ML will change the world in ways unimaginable.

8 resources to get free training data for ml systems

The current technological landscape has exhibited the need for feeding Machine Learning systems with useful training data sets. Training data helps a program understand how to apply technology such as neural networks. This is to help it to learn and produce sophisticated results.

The accuracy and relevance of these sets pertaining to the ML system they are being fed into are of paramount importance, for that dictates the success of the final model. For example, if a customer service chatbot is to be created which responds courteously to user complaints and queries, its competency will be highly determined by the relevancy of the training data sets given to it.

To facilitate the quest for reliable training data sets, here is a list of resources which are available free of cost.

Kaggle

Owned by Google LLC, Kaggle is a community of data science enthusiasts who can access and contribute to its repository of code and data sets. Its members are allowed to vote and run kernel/scripts on the available datasets. The interface allows users to raise doubts and answer queries from fellow community members. Also, collaborators can be invited for direct feedback.

The training data sets uploaded on Kaggle can be sorted using filters such as usability, new and most voted among others. Users can access more than 20,000 unique data sets on the platform.

Kaggle is also popularly known among the AI and ML communities for its machine learning competitions, Kaggle kernels, public datasets platform, Kaggle learn and jobs board.

Examples of training datasets found here include Satellite Photograph Order and Manufacturing Process Failures.

Registry of Open Data on AWS

As its website displays, Amazon Web Services allows its users to share any volume of data with as many people they’d like to. A subsidiary of Amazon, it allows users to analyze and build services on top of data which has been shared on it.  The training data can be accessed by visiting the Registry for Open Data on AWS.

Each training dataset search result is accompanied by a list of examples wherein the data could be used, thus deepening the user’s understanding of the set’s capabilities.

The platform emphasizes the fact that sharing data in the cloud platform allows the community to spend more time analyzing data rather than searching for it.

Examples of training datasets found here include Landsat Images and Common Crawl Corpus.

UCI Machine Learning Repository

Run by the School of Information & Computer Science, UC Irvine, this repository contains a vast collection of ML system needs such as databases, domain theories, and data generators. Based on the type of machine learning problem, the datasets have been classified. The repository has also been observed to have some ready to use data sets which have already been cleaned.

While searching for suitable training data sets, the user can browse through titles such as default task, attribute type, and area among others. These titles allow the user to explore a variety of options regarding the type of training data sets which would suit their ML models best.

The UCI Machine Learning Repository allows users to go through the catalog in the repository along with datasets outside it.

Examples of training data sets found here include Email Spam and Wine Classification.

Microsoft Research Open Data

The purpose of this platform is to promote the collaboration of data scientists all over the world. A collaboration between multiple teams at Microsoft, it provides an opportunity for exchanging training data sets and a culture of collaboration and research.

The interface allows users to select datasets under categories such as Computer Science, Biology, Social Science, Information Science, etc. The available file types are also mentioned along with details of their licensing.

Datasets spanning from Microsoft Research to advance state of the art research under domain-specific sciences can be accessed in this platform.

GitHub.com/awesomedata/awesomepublicdatasets

GitHub is a community of software developers who apart from many things can access free datasets. Companies like Buzzfeed are also known to have uploaded data sets on federal surveillance planes, zika virus, etc. Being an open-source platform, it allows users to contribute and learn about training data sets and the ones most suitable for their AI/ML models.

Socrata Open Data

This portal contains a vast variety of data sets which can be viewed on its platform and downloaded. Users will have to sort through data which is currently valid and clean to find the most useful ones. The platform allows the data to be viewed in a tabular form. This added with its built-in visualization tools makes the training data in the platform easy to retrieve and study.

Examples of sets found in this platform include White House Staff Salaries and Workplace Fatalities by US State.

R/datasets

This subreddit is dedicated to sharing training datasets which could be of interest to multiple community members. Since these are uploaded by everyday users, the quality and consistency of the training sets could vary, but the useful ones can be easily filtered out.

Examples of training datasets found in this subreddit include New York City Property Tax Data and Jeopardy Questions.

Academic Torrents

This is basically a data aggregator in which training data from scientific papers can be accessed. The training data sets found here are in many cases massive and they can be accessed directly on the site. If the user has a BitTorrent client, they can download any available training data set immediately.

Examples of available training data sets include Enron Emails and Student Learning Factors.

Conclusion

In an age where data is arguably the world’s most valuable resource, the number of platforms which provide this is also vast. Each platform caters to its own niche within the field while also displaying commonly sought after datasets.  While the quality of training data sets could vary across the board, with the appropriate filters, users can access and download the data sets which suit their machine learning models best. If you need a custom dataset, do check us out here, share your requirements with us, and we’ll more than happy to help you out!